GAP - Reference Manual

Release 4.13.1, 2024-06-11

The GAP Group

The GAP Group Email: support@gap-system.org
Homepage: https://www.gap-system.org

mailto://support@gap-system.org
https://www.gap-system.org

GAP - Reference Manual 2

Copyright

Copyright © (1987-2024) for the core part of the GAP system by the GAP Group.

Most parts of this distribution, including the core part of the GAP system are
distributed under the terms of the GNU General Public License Version 2, see
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html or the LICENSE file in the root
directory of the GAP installation.

More detailed information about copyright and licenses of parts of this distribution can be found in Section
1.4 of this manual.

GAP has been developed over a long time and has many authors and contributors. More detailed
information can be found in Section 1.2 of this manual.

https://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Contents

1 Preface 23
1.1 The GAP System 23
1.2 Authors and Maintainers e e e e e 25
1.3 Acknowledgements 26
1.4 Copyrightand License i 26
1.5 Further Information about GAP 27
2 The Help System 28
2.1 InvokingtheHelp 28
2.2 Browsing through the Sections oL 28
2.3 Changingthe Help Viewer. 29
24 ThePager Command 31
3 Running GAP 33
3.1 Command Line Options it 33
3.2 Thegap.iniand gaprcfiles 37
3.3 Saving and Loading a Workspace 44
3.4 Testing for the System Architecture 45
3.5 Global Values that Control the GAP Session 45
3.6 Coloring the PromptandInput 45
4 The Programming Language 48
4.1 Language Overview oo e e 48
42 Lexical Structure e 49
43 Symbols e 49
4.4 WhItespaces v v v i e e e e e e 50
4.5 Keywords e 51
4.6 Identifiers e e 51
477 EXPressions i e e e e e e e e e e e e 52
4.8 Variables e 53
4.9 More About Global Variables 55
4.10 Namespaces for GAP packages L. 58
411 Function e e 59
412 FunctionCalls e 63
413 CompariSONS v v v i e e e e e e e e e e e e 64
4.14 Arithmetic Operators o e e e e e e 65

GAP - Reference Manual 4

415 Statementso ..l e e e e e e e e 66
416 Syntax Trees e e e e 74
Functions 75
5.1 Information about afunction 75
5.2 Calling a function with a list argument that is interpreted as several arguments . . . 78
5.3 Wrapping a function, so the values produced are cached 79
54 Functions thatdonothing 80
5.5 FunctionTypes. e 82
5.6 Naming Conventions it e e e 82
5.7 Code annotations (Pragmas) « . v v v e b e e e e e e e e e 83
Main Loop and Break Loop 85
6.1 MainLoop e 85
6.2 Special Rules for Input Lines 87
6.3 ViewandPrint 87
6.4 BreakLoops e 91
6.5 Variable AccessinaBreakLoop, 96
6.6 Errorand ErrorCount 97
6.7 Leaving GAP e 98
6.8 LineEditing L 99
6.9 Editing using the readlinelibrary 102
6.10 EditingFiles 105
6.11 Editor Support e e 105
6.12 Changing the Screen Size L 106
6.13 TeachingMode e 106
Debugging and Profiling Facilities 108
7.1 Recovery from NoMethodFound-Errors 108
7.2 Inspecting Applicable Methods oL oo 110
7.3 TracingMethods 110
74 InfoFunctions 113
7.5 ASSEItiONS L e e 116
7.6 Timingo e e 117
7.7 Tracking Memory Usage it 119
7.8 Profiling 119
7.9 Information about the versionused oL 127
700 TestFiles o o o 127
7.11 Debugging Recursion L 133
7.12 Global Memory Information 135
Options Stack 137
8.1 Functions Dealing with the Options Stack 137

8.2 Options Stack —anExample 139

9

10

11

12

13

GAP - Reference Manual

Files and Filenames

9.1 Portability
9.2 GAPRootDirectories
9.3 Directories e
94 FileNames
9.5 Special Filenames
9.6 FileAccess.
9.7 FileOperations.
Streams

10.1 Categories for Streams and the StreamsFamily
10.2 Operations applicable to All Streams
10.3 Operations for Input Streams
10.4 Operations for Output Streams
105 FileStreams
10.6 UserStreams o .ottt
10.7 String Streams
10.8 Input-Output Streams
109 Dummy Streams
10.10 Handling of Streams in the Background
10.11 Comma separatedfiles,
10.12 Opening files in the Operating System
Processes

11.1 ProcessandExec
Objects and Elements

12.1 Objects o
12.2 Elements as equivalence classes
123 Sets. . . . o o
124 Domains e e e
12.5 Identical Objects
12.6 Mutability and Copyability
12.7 Duplicationof Objects
12.8 Other Operations Applicable to any Object
Types of Objects

13.1 Families
132 Filters
13.3 Categories vt i e e e e e e e
13.4 Representation
13.5 Attributes
13.6 Setter and Tester for Attributes
13.7 Properties
13.8 OtherFilters

139 Types o oo

140
140
140
141
143
144
144
146

150
150
152
152
155
158
159
160
160
162
162
163
164

165
165

168
168
168
169
169
169
171
173
174

14

15

16

17

18

19

GAP - Reference Manual

Integers

14.1 Integers: Global Variables,
14.2 Elementary Operations for Integers,
14.3 Quotientsand Remainders
14.4 Prime Integers and Factorization
145 Residue ClassRings L
14.6 Check Digits e e
1477 Random Sources e e e e
14.8 Bitfields e e
Number Theory

15.1 InfoNumtheor (InfoClass)
152 PrimeResidues
15.3 Primitive Roots and Discrete Logarithms
154 Roots Modulo Integers
15.5 Multiplicative Arithmetic Functions
15.6 Continued Fractions
157 Miscellaneous e e
Combinatorics

16.1 Combinatorial Numbers L
16.2 Combinations, Arrangements and Tuples
16.3 Fibonacci and Lucas Sequences
16.4 PermanentofaMatrix e
Rational Numbers

17.1 Rationals: Global Variables
17.2 Elementary Operations for Rationals
Cyclotomic Numbers

18.1 Operations for Cyclotomics vt i i e
18.2 Infinity and negative Infinityo Lo
18.3 Comparisons of Cyclotomics
18.4 ATLAS Irrationalities o e
18.5 Galois Conjugacy of Cyclotomics
18.6 Internally Represented Cyclotomics
Floats

19.1 Asamplerun. L e
192 Methods e e
19.3 High-precision-specificmethods L.
19.4 Complex arithmetic

19.5 Interval-specificmethods

196
196
197
200
203
208
210
211
215

217
217
217
219
221
223
225
226

227
227
230
240
241

242
242
243

245
245
250
251
251
254
257

21

22

23

GAP - Reference Manual

20 Booleans
20.1 IsBool (Filter) e e
20.2 Fail (Variable) e e
20.3 Comparisonsof Booleans L L
20.4 Operations forBooleans
Lists
21.1 ListCategories o oo e e e e e
21.2 Basic Operations for Lists
21.3 ListElements e
21.4 List ASSignment e e e e e e e e
21.5 IsBound and Unbind for Lists
21.6 Identical Lists e
217 Duplication of Lists
21.8 Membership Testfor Lists
21.9 Enlarging Internally Represented Lists
21.10 Comparisons of Lists
21.11 Arithmetic for Lists e
21.12 Filters Controlling the Arithmetic Behaviourof Lists
21.13 Additive Arithmetic for Lists oL
21.14 Multiplicative Arithmetic for Lists
21.15 Mutability Status and List Arithmetic
21.16 Finding Positionsin Listso oL
21.17 Properties and Attributes for Lists L.
21.18 Sorting Lists L e e e
21.19 Sorted Listsand Sets
21.20 Operations for Lists e
21.21 Advanced List Manipulations
21.22 RaNZES . . . o o o o e e e e e
21.23 Enumeratorso i i e e e e e e e e e e e
21.24 Plain LisSts e e e e e
Boolean Lists
22.1 IsBlist (Filter) e
22.2 Boolean Lists Representing Subsets,
22.3 SetOperations via Boolean Lists
22.4 Function that Modify Boolean Lists
22.5 More about Boolean Lists L
Row Vectors
23.1 IsRowVector (Filter) e
23.2 Operators for Row Vectors
23.3 Row Vectors over Finite Fields,
23.4 Coefficient List Arithmetic L
23.5 Shifting and Trimming Coefficient Lists,
23.6 Functions for Coding Theory,
23.7 Vectors as coefficients of polynomials 0L,

268
268
268
269
269

272
272
274
275
276
280
281
283
284
284
285
286
287
289
290
293
294
300
302
304
307
318
320
322
323

324
324
325
326
327
329

GAP - Reference Manual

24 Matrices

25

26

241
242
243
244
24.5
24.6
24.7
24.8
249
24.10
24.11
24.12
24.13
24.14
24.15
24.16
24.17
24.18

InfoMatrix (Info Class) e
Categories of Matrices o o e e
Operators for Matrices e
Properties and Attributes of Matrices
Matrix Constructionso e e e e e e e
Random Matrices
Matrices Representing Linear Equations and the Gaussian Algorithm
Eigenvectors and eigenvalues
Elementary Divisors L
Echelonized Matrices e
Matrices as BasisofaRow Space L oo
Triangular Matrices i e e
Matrices as Linear Mappings Lo e
Matrices over Finite Fields 0.
Inverse and Nullspace of an Integer Matrix ModuloanIdeal
Special Multiplication Algorithms for Matricesover GF(2)
Block Matrices o oo e e e e e e
Linear Programming

Integral matrices and lattices

25.1
25.2
253
254
255
25.6

Linear equations over the integers and Integral Matrices
Normal Forms over the Integers,
Determinant of an integer matrix oo
Decompositions e e
Lattice Reduction L
Orthogonal Embeddings

Vector and Matrix Objects

26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9
26.10
26.11
26.12
26.13
26.14
26.15
26.16

Concepts and Rules for Vector and Matrix Objects
Categories of Vector and Matrix Objects
Defining Attributes of Vector and Matrix Objects
Constructing Vector and Matrix Objects
Operations for Base Domains of Vector and Matrix Objects
Operations for Vector and Matrix Objects
List Like Operations for Vector Objects
Arithmetical Operations for Vector Objects
Operations for Vector Objects v it
Arithmetical Operations for Matrix Objects
Operations for Matrix Objects
Operations for Row List Matrix Objects
Basic operations for row/column reductions L. L.
Implementing New Vector and Matrix Objects Types
Available Representations of Vector Objects
Available Representations of Matrix Objects

341
341
341
343
345
348
351
352
354
355
357
358
360
361
363
366
367
368
369

370
370
372
375
375
377
379

GAP - Reference Manual

27 Strings and Characters

28

29

30

31

27.1
27.2
27.3
274
27.5
27.6
27.7
27.8
27.9

Dictionaries and General Hash Tables

28.1 Using Dictionaries oL
28.2 Dictionarieso e
28.3 Dictionaries via Binary Lists,
284 GeneralHashTables
28,5 Hashkeys
28.6 Densehashtables
287 Sparsehashtables
Records

29.1 IsRecordand RecNames.
29.2 Accessing Record Elements
29.3 Record Assignmento
29.4 Identical Records
29.5 Comparisonsof Records,
29.6 IsBound and Unbind for Records
29.7 Record Access Operations
Collections

30.1 IsCollection (Filter)
30.2 Collection Families
303 ListsandCollections,
30.4 Attributes and Properties for Collections
30.5 Operations for Collections
30.6 Membership Test for Collections
30.7 Random Elements
30.8 Iterators
Domains and their Elements

31.1 Operational Structure of Domains
31.2 Equality and Comparison of Domains
31.3 Constructing Domains
31.4 Changing the Structure
31.5 Changing the Representation

IsCharand IsString
Special Characters
Triple Quoted Strings L.
Internally Represented Strings
Recognizing Characters
Comparisons of Strings
Operations to Produce or Manipulate Strings
Character Conversion
Operations to Evaluate Strings
27.10 Calendar Arithmetic
27.11 Obtaining LaTeX Representations of Objects

405
405
407
409
409
411
411
412
420
421
424
426

427
427
429
429
430
431
431
431

433
433
434
435
436
437
438
439

441
441
441
443
449
451
453
453
455

32

33

34

35

GAP - Reterence Manual

31.6 Domain Categories e e e e e e e
317 Parentso e e
31.8 Constructing Subdomains Lo
31.9 Operations for Domains L
31.10 Attributes and Properties of Elements
31.11 Comparison Operations for Elements
31.12 Arithmetic Operations for Elements
31.13 Relations Between Domains Lo
31.14 Useful Categoriesof Elements
31.15 Useful Categories for all Elements of a Family
Mappings

32.1 Direct Products and their Elements
322 Creating Mappingso e e e e e e e
32.3 Properties and Attributes of (General) Mappings
32.4 Imagesunder Mappings v i it e e e e e e e e
32.5 Preimages under Mappingso
32.6 Arithmetic Operations for General Mappings
3277 Mappings which are Compatible with Algebraic Structures
32.8 Magma Homomorphisms
32.9 Mappings that Respect Multiplication
32.10 Mappings that Respect Addition
32.11 Linear Mappings o o i i e e e e e
32.12 Ring Homomorphisms e
32.13 General Mappings e e e e e
32.14 Technical Matters Concerning General Mappings
Relations

33.1 General Binary Relations,
33.2 Properties and Attributes of Binary Relations
33.3 Binary Relationson Points
33.4 Closure Operations and Other Constructors
33.5 Equivalence Relations
33.6 Attributes of and Operations on Equivalence Relations
337 Equivalence Classes i e e
Orderings

34.1 IsOrdering (Filter)
34.2 Building new orderings Lo
34.3 Properties and basic functionality Lo oL
34.4 Orderings on families of associative words,
Magmas

35.1 Magma Categories« . . vt e e e e e e e
352 Magma Generation i e e e e e e e e e e
35.3 Magmas Defined by Multiplication Tables
35.4 Attributes and Properties for Magmas oL Lo

10

463
464
464
465
466
470
471
472
475
479

481
481
483
486
487
489
491
492
492
493
494
495
496
497
497

500
500
501
503
504
505
507
507

509
509
509
510
511

GAP - Reterence Manual

36 Words
36.1 Categories of Words and Nonassociative Words
36.2 Comparisonof Words Lo
36.3 Operations for Words
36.4 FreeMagmas e e e e e
36.5 External Representation for Nonassociative Words
37 Associative Words
37.1 Categories of Associative Words
37.2 Free Groups, Monoids and Semigroups
37.3 Comparison of Associative Words
37.4 Operations for Associative Words oL Lo
37.5 Operations for Associative Words by their Syllables
37.6 Representations for Associative Wordso oL oL
37.7 The External Representation for Associative Words
37.8 Straight Line Programs
37.9 Straight Line Program Elements
38 Rewriting Systems
38.1 Operations on rewriting SYStems v vt e
38.2 Operations on elements of the algebra.
38.3 Properties of rewriting Systemso e e
38.4 Rewriting in Groups and Monoidso
38.5 Developing rewriting Systems e e e e e
39 Groups
39.1 GroupElements e
39.2 Creating Groups« . o i i e e e e e
390.3 Subgroups e e e e e
39.4 Closures of (Sub)groups L
39.5 Expressing Group Elements as Words in Generators
39.6 Structure Descriptions
397 Cosets
39.8 Transversals e
39.9 Double Cosets oL e e
39.10 Conjugacy CIasses o v v i it e e e e
39.11 Normal Structure e e
39.12 Specific and Parametrized Subgroups L.
39.13 Sylow Subgroups and Hall Subgroups
39.14 Subgroups characterized by prime powers
39.15 Group Properties
39.16 Numerical Group Attributes
39.17 Subgroup Series
39.18 Factor Groups o v v it e e e e e e e e e e e
39.19 Setsof Subgroups L.
39.20 Subgroup Lattice e
39.21 Specific Methods for Subgroup Lattice Computations

11

526
526
528
529
530
532

534
534
535
537
538
541
541
543
544
550

552
552
554
555
555
556

40

41

42

43

GAP - Reterence Manual

39.22 Special Generating Sets L o
39.23 1-Cohomology e e
39.24 Schur Covers and Multipliers o
39.25 2-Cohomology e e
39.26 Tests for the Availability of Methods
39.27 Specific functions for Normalizer calculation
Group Homomorphisms

40.1 Creating Group Homomorphisms
40.2 Operations for Group Homomorphisms
40.3 Efficiency of Homomorphisms
40.4 Homomorphism for very large groups
40.5 Nice Monomorphisms e
40.6 Group Automorphisms e
40.7 Groups of Automorphisms L
40.8 Calculating with Group Automorphisms
40.9 Searching for Homomorphisms,
40.10 Representations for Group Homomorphisms
Group Actions

41.1 About Group ACHIONS« . v v vt e e e e e e e e
41.2 BasiCACHONS
41.3 Action on canonical representatives oL oL
41.4 Orbits o o e
41.5 Stabilizers e e e
41.6 Elements with Prescribed Images
41.7 The Permutation Image of an Action
41.8 Actionofagrouponitself L Lo
41.9 Permutations Induced by Elements and Cycles
41.10 Tests for ACONS v v e e e e e e e e e e e e e
41.11 Block Systems e e
41.12 External Sets e e e e e e e e e
Permutations

42.1 IsPerm (Filter) e
42.2 Comparison of Permutations L oL oL
42.3 Moved Points of Permutationso
424 Signand Cycle Structure e e
425 Creating Permutations Lo
Permutation Groups

43.1 IsPermGroup (Filter) e
43.2 The Natural Action e e
43.3 Computing a Permutation Representation
434 Symmetric and Alternating Groupso
43.5 Primitive Groups e e e e e

43.6 StabilizerChains e e e

12

611
613
616
619
621
622

624
624
627
628
629
630
631
633
635
636
639

642
642
643
648
648
651
652
653
654
656
658
660
662

667
667
669
669
671
671

44

45

46

GAP - Reterence Manual

43.7 Randomized Methods for Permutation Groups
43.8 Construction of Stabilizer Chains
43.9 Stabilizer ChainRecords oL o
43.10 Operations for Stabilizer Chains
43.11 Low Level Routines to Modify and Create Stabilizer Chains
43.12 Backtrack
43.13 Working with large degree permutation groups

Matrix Groups

44.1 IsMatrixGroup (Filter)
44.2 Attributes and Properties for Matrix Groups
443 Actions of Matrix Groups e
444 GLand SL e
445 TInvariantForms L
44.6 Matrix Groups in CharacteristicO,
447 Acting OnRightand OnLeft

Polycyclic Groups

45.1 Polycyclic Generating Systems
452 ComputingaPcgs
45.3 Defining a Pcgs Yourselfo o
45.4 Elementary Operations foraPcgs
45.5 Elementary Operations for a Pcgs and an Element
45.6 Exponents of Special Products oo
45.7 Subgroups of Polycyclic Groups —Induced Pcgs
45.8 Subgroups of Polycyclic Groups — Canonical Pcgs
45.9 Factor Groups of Polycyclic Groups —ModuloPcgs
45.10 Factor Groups of Polycyclic Groups in their Own Representation
45.11 Pcgsand Normal Series
45.12 Sum and Intersectionof Pcgs L oL oo
45.13 Special Pcgs e
45.14 Action on Subfactors DefinedbyaPcgs L.
45.15 Orbit Stabilizer Methods for Polycyclic Groups
45.16 Operations which have Special Methods for Groups with Pcgs
45.17 Conjugacy Classes in Solvable Groups

Pc Groups

46.1 TheFamilyPcgs e
46.2 Elementsof Pc Groups e
46.3 Pc Groupsversus FpGroups
46.4 Constructing Pc Groups L
46.5 Computing PcGroups
46.6 SavingaPcGroup
46.7 Operationsfor Pc Groups
46.8 2-Cohomology and Extensions
46.9 CodingaPcPresentation
46.10 Random Isomorphism Testing

13

679
682
684
685
688
690
691

693
693
694
695
695
697
698
701

702
702
703
704
704
705
707
708
710
711
713
714
718
719
721
723
723
723

GAP - Reterence Manual

47 Finitely Presented Groups

48

49

50

47.1 IsSubgroupFpGroup and IsFpGroup
47.2 Creating Finitely Presented Groups
47.3 Comparison of Elements of Finitely Presented Groups
474 Preimagesinthe FreeGroup,
47.5 Operations for Finitely Presented Groups
47.6 Coset Tables and Coset Enumeration
47.7 Standardization of cosettables oL L
47.8 Coset tables for subgroups in the whole group
479 Augmented Coset Tables and Rewriting
47.10 Low Index Subgroups e
47.11 Converting Groups to Finitely Presented Groups
47.12 New Presentations and Presentations for Subgroups
47.13 Preimages under Homomorphisms from an FpGroup
47.14 Quotient Methods
47.15 Abelian Invariants for Subgroups
47.16 Testing Finiteness of Finitely Presented Groups
Presentations and Tietze Transformations

48.1 Creating Presentations
48.2 Subgroup Presentations Lo
48.3 RelatorsinaPresentation L L
48.4 Printing Presentationso o
48.5 Changing Presentations i i
48.6 Tietze Transformations Lo e
48.7 Elementary Tietze Transformations
48.8 Tietze Transformations that introduce new Generators
48.9 Tracing generator images through Tietze transformations
48.10 The Decoding Tree Procedure
48.11 Tietze OPtions« o v v v i i e e e e e e e
Group Products

49.1 DirectProducts
49.2 Semidirect Products
49.3 Subdirect Products
494 WreathProducts
49.5 FreeProducts
49.6 Embeddings and Projections for Group Products
Group Libraries

50.1 BasicGroups. o e e
50.2 Classical Groups o o e e e e
50.3 Conjugacy Classes in Classical Groups
50.4 Constructors for Basic Groups o o
50.5 Selection Functions L e
50.6 Finite Perfect Groups
50.7 Irreducible Maximal Finite Integral Matrix Groups

14

739
740
741
742
743
745
745
749
751
751
752
753
756
757
758
761
763

765
765
768
772
773
775
776
779
781
784
786
789

792
792
793
795
795
798
798

GAP - Reterence Manual

51 Semigroups and Monoids
ST Semigroups oo e e e e e e
512 Monoids oL e e e e e
51.3 Inverse semigroups and monoids L.l
51.4 Properties of Semigroups
51.5 Idealsof semigroups L
51.6 Congruences on SEMIIOUPS . . .« . v v v v v v v v v e e e e e e e e e e
SI.7 QUOLENES o o e e e e e e e e e e e e e e e
51.8 Green’sRelations
51.9 Rees Matrix Semigroups e

52 Finitely Presented Semigroups and Monoids
52.1 IsSubsemigroupFpSemigroup (Filter)
52.2 Creating Finitely Presented Semigroups and Monoids
52.3 Comparison of Elements of Finitely Presented Semigroups
52.4 Preimages in the Free Semigroup or Monoid
52.5 Rewriting Systems and the Knuth-Bendix Procedure
52.6 Todd-Coxeter Procedure

53 Transformations
53.1 The family and categories of transformations
53.2 Creating transformations
53.3 Changing the representation of a transformation
53.4 Operators for transformations
53.5 Attributes for transformationso oL Lo
53.6 Displaying transformations L
53.7 Semigroups of transformations

54 Partial permutations
54.1 The family and categories of partial permutations
54.2 Creating partial permutations
54.3 Attributes for partial permutationso oL
54.4 Changing the representation of a partial permutation
54.5 Operators and operations for partial permutations
54.6 Displaying partial permutations
54.7 Semigroups and inverse semigroups of partial permutations

55 Additive Magmas
55.1 (Near-)Additive Magma Categories oo i i
55.2 (Near-)Additive Magma Generation
55.3 Attributes and Properties for (Near-)Additive Magmas
55.4 Operations for (Near-)Additive Magmas

56 Rings
56.1 Generating Rings L
56.2 Idealsof Rings e
563 RingsWithOne

15

832
832
836
839
842
843
844
844
845
848

857
859
860
861
861
863
865

866
867
868
871
873
876
885
886

890
892
892
896
904
905
910
911

916
916
918
920
921

GAP - Reterence Manual 16

56.4 Propertiesof Rings 930
56.5 Units and Factorizations 932
56.6 EuclideanRings L 934
567 GedandLem. L e 936
56.8 Homomorphismsof Rings 938
569 SmallRings e 939
57 Modules 942
57.1 Generatingmodules 942
572 Submodules 944
573 FreeModules L 945
58 Fields and Division Rings 948
58.1 Generating Fields 948
582 Subfieldsof Fields 950
583 Galois Action e 952
59 Finite Fields 956
59.1 Finite Field Elements 956
59.2 Operations for Finite Field Elements 958
59.3 Creating Finite Fields 961
59.4 Frobenius AutomorphiSms 962
59.5 Conway Polynomials 963
59.6 Printing, Viewing and Displaying Finite Field Elements 964
60 Abelian Number Fields 967
60.1 Construction of Abelian Number Fields 967
60.2 Operations for Abelian Number Fields, ... 969
60.3 Integral Bases of Abelian Number Fields 970
60.4 Galois Groups of Abelian Number Fields, 972
60.5 Gaussians e e 974
61 Vector Spaces 975
61.1 IsLeftVectorSpace (Filter) 975
61.2 Constructing Vector Spaces o v vt e e 975
61.3 Operations and Attributes for Vector Spaces 977
61.4 Domains of Subspaces of Vector Spaces 977
61.5 Basesof Vector Spaces 978
61.6 Operations for Vector Space Bases 980
61.7 Operations for Special Kindsof Bases 982
61.8 Mutable Bases 983
61.9 Rowand Matrix Spaces e 986
61.10 Vector Space Homomorphisms oL 989
61.11 Vector Spaces Handled By Nice Bases 992
61.12 How to Implement New Kinds of Vector Spaces 994
61.13 Tensor Products and Exterior and Symmetric Powers 995

62

63

64

65

66

GAP - Reterence Manual

Algebras

62.1 InfoAlgebra(InfoClass)
62.2 Constructing Algebras by Generators
62.3 Constructing Algebras as Free Algebras
62.4 Constructing Algebras by Structure Constants
62.5 Some Special Algebras L
62.6 Subalgebras e
62.7 Idealsof Algebras
62.8 Categories and Properties of Algebras
62.9 Attributes and Operations for Algebras
62.10 Homomorphisms of Algebras
62.11 Representations of Algebras oo

Finitely Presented Algebras

Lie Algebras

64.1 LieObjects e e
64.2 Constructing Liealgebras
64.3 Distinguished Subalgebras oL oo
64.4 SeriesofIdeals
64.5 Propertiesofalie Algebra
64.6 Semisimple Lie Algebras and Root Systems
64.7 Semisimple Lie Algebras and Weyl Groups of Root Systems
64.8 Restricted Lie algebras
64.9 The Adjoint Representation Lo
64.10 Universal Enveloping Algebras
64.11 Finitely Presented Lie Algebras
64.12 Modules over Lie Algebras and Their Cohomology
64.13 Modules over Semisimple Lie Algebras
64.14 Admissible Latticesin UEA
64.15 Tensor Products and Exterior and Symmetric Powers of Algebra Modules

Magma Rings

65.1 FreeMagmaRings.
65.2 Elements of Free Magma Rings,
65.3 Natural Embeddings related to MagmaRings
65.4 Magma Rings modulo Relations,
65.5 Magma Rings modulo the Span of a Zero Element
65.6 Technical Details about the Implementation of Magma Rings

Polynomials and Rational Functions

66.1 Indeterminates e e e e
66.2 Operations for Rational Functions
66.3 Comparison of Rational Functions
66.4 Properties and Attributes of Rational Functions
66.5 Univariate Polynomials
66.6 Polynomials as Univariate Polynomials in one Indeterminate

17

998
998
998
999
1000
1004
1006
1007
1008
1010
1018
1023

1033

67

68

69

70

GAP - Reterence Manual

66.7 Multivariate Polynomials oL oo
66.8 Minimal Polynomials
66.9 Cyclotomic Polynomials
66.10 Polynomial Factorization
66.11 Polynomials over the Rationals
66.12 Factorization of Polynomials over the Rationals
66.13 Laurent Polynomials
66.14 Univariate Rational Functions,
66.15 Polynomial Rings and FunctionFields
66.16 Univariate Polynomial Rings,
66.17 Monomial Orderings i e
66.18 Groebner Bases
66.19 Rational Function Families
66.20 The Representations of Rational Functions
66.21 The Defining Attributes of Rational Functions
66.22 Creation of Rational Functions
66.23 Arithmetic for External Representations of Polynomials
66.24 Cancellation Tests for Rational Functions

Algebraic extensions of fields

67.1 Creation of Algebraic Extensions
67.2 Elements in Algebraic Extensions
67.3 Finding Subfields

p-adic Numbers (preliminary)
68.1 Purep-adicNumbers
68.2 Extensions of the p-adic Numbers

The MeatAxe

69.1 MeatAxeModules
69.2 Module ConsStructions« .ot e i e e e e
69.3 Selecting a Different MeatAxe
69.4 AccessingaModule L
69.5 TIrreducibility Tests L
69.6 Decompositionof modules
69.7 Finding Submodules
69.8 Induced Actions
69.9 Module Homomorphisms
69.10 Module Homomorphisms for irreducible modules
69.11 MeatAxe Functionality for Invariant Forms
69.12 The Smash MeatAxe i
69.13 Smash MeatAxe Flags

Tables of Marks

70.1 More about Tablesof Marks L o
70.2 Table of Marks Objects in GAP
70.3 Constructing Tablesof Marks

71

72

70.4
70.5
70.6
70.7
70.8
70.9
70.10
70.11
70.12
70.13

GAP - Reterence Manual

Printing Tablesof Marks
Sorting Tablesof Marks
Technical Details about Tables of Marks
Attributes of Tablesof Marks
Properties of Tablesof Marks
Other Operations for Tablesof Marks
Accessing Subgroups via Tablesof Marks
The Interface between Tables of Marks and Character Tables
Generic Construction of Tablesof Marks
The Library of Tablesof Marks

Character Tables

71.1
71.2
71.3
71.4
71.5
71.6
71.7
71.8
71.9
71.10
71.11
71.12
71.13
71.14
71.15
71.16
71.17
71.18
71.19
71.20
71.21
71.22
71.23

Some Remarks about Character Theory in GAP
History of Character Theory Stuffin GAP
Creating Character Tables
Character Table Categories v v v i i et e e e e
Conventions for Character Tables
The Interface between Character Tables and Groups
Operators for Character Tables
Attributes and Properties for Groups and Character Tables
Attributes and Properties only for Character Tables
Normal Subgroups Represented by Lists of Class Positions
Operations Concerning Blocks o
Other Operations for Character Tables
Printing Character Tables
Computing the Irreducible Charactersof aGroup
Representations Given by Modules
The Dixon-Schneider Algorithm
Advanced Methods for Dixon-Schneider Calculations
Components of a DixonRecord 0oL,
An Example of Advanced Dixon-Schneider Calculations
Constructing Character Tables from Others
Sorted Character Tables
Automorphisms and Equivalence of Character Tables
Storing Normal Subgroup Information

Class Functions

72.1
72.2
72.3
72.4
72.5
72.6
72.7
72.8
72.9
72.10

Basic Operations for Class Functions
Comparison of Class Functions
Arithmetic Operations for Class Functions
Printing Class Functions
Creating Class Functions from Values Lists
Creating Class Functions using Groups
Operations for Class Functions,
Restricted and Induced Class Functions
Reducing Virtual Characters

73

74

75

76

GAP - Reterence Manual

72.11 Symmetrizations of Class Functions
72.12 Molien Series e
72.13 Possible Permutation Characters
72.14 Computing Possible Permutation Characters
72.15 Operations for Brauer Characters
72.16 Domains Generated by Class Functions

Maps Concerning Character Tables

73.1 PowerMaps e e
73.2 Orbits on Sets of Possible Power Maps
73.3 Class Fusions between Character Tables
73.4 Orbits on Sets of Possible Class Fusions
73.5 Parametrized Maps e
73.6 Subroutines for the Construction of PowerMaps
73.7 Subroutines for the Construction of Class Fusions

Unknowns
74.1 More about Unknowns e

Monomiality Questions

75.1 InfoMonomial (Info Class) ...,
75.2 Character Degrees and Derived Length
75.3 Primitivity of Characters L L
754 Testing Monomiality
75.5 Minimal Nonmonomial Groups

Using and Developing GAP Packages

76.1 Installinga GAP Package
76.2 Loadinga GAP Package
76.3 Functions for GAP Packages
76.4 Guidelines for Writinga GAP Package
76.5 Structure of a GAP Package
76.6 Writing Documentation and Tools Needed
76.7 AnExample of a GAP Package L.
76.8 File Structure
76.9 Creating the Packagelnfo.gFile
76.10 Functions and Variables and Choices of Their Names
76.11 Package Dependencies (Requesting one GAP Package from within Another)
76.12 Extensions Provided by aPackage
76.13 Declaration and Implementation Part of a Package
76.14 Autoreadable Variables Lo
76.15 Standalone Programs ina GAP Package
76.16 Having an InfoClass
76.17 The Banner. e
76.18 Version Numbers L e
76.19 Testinga GAP package
76.20 Access to the GAP Development Version

77

78

79

80

GAP - Reterence Manual

76.21 Version control and continuous integration for GAP packages
76.22 Selecting a license fora GAP Package
76.23 Releasinga GAPPackage
76.24 The homepageof aPackage
76.25 Some thingstokeepinmind
76.26 Package release checklists Lo oo

Replaced and Removed Command Names

77.1 Group Actions —Name Changes
77.2 Package Interface — Obsolete Functions and Name Changes
77.3 Normal Forms of Integer Matrices — Name Changes
77.4 Miscellaneous Name Changes or Removed Names
77.5 The former.gaprcfile
77.6 Semigroup propertieso i i e e e e e e e e e e e e

Method Selection

78.1 Operationsand Methods L
78.2 ConsStruCtors v i e e e e e e e e
78.3 Method Installation L L
78.4 Applicable Methods and Method Selection
78.5 Partial Methods
78.6 Redispatching
78.7 Immediate Methods L
78.8 Logical Implications e
78.9 Operations and Mathematical Terms

Creating New Objects

79.1 Creating Objects o i e e
79.2 Component Objects v i i e e e e e e e
79.3 Positional Objects
79.4 Implementing New List Objects
79.5 Example — Constructing Enumerators
79.6 Example — Constructing Iterators
79.7 Arithmetic Issues in the Implementation of New Kindsof Lists
79.8 External Representation
79.9 Mutability and Copying
79.10 Global Variables inthe Library
79.11 Declaration and Implementation Part

Examples of Extending the System

80.1 AdditionofaMethod
80.2 Extending the Range of Definition of an Existing Operation
80.3 Enforcing Property Tests
80.4 Addinganew Operation
80.5 Addinganew Attribute Lo
80.6 Adding anew Representation
80.7 Components versus Attributes oL

GAP - Reterence Manual

80.8 Addingnew Concepts e
80.9 Creating Own Arithmetic Objects

81 An Example — Residue Class Rings
81.1 A First Attempt to Implement Elements of Residue Class Rings
81.2 Why Proceed in a Different Way? L L.
81.3 A Second Attempt to Implement Elements of Residue Class Rings
81.4 Compatibility of Residue Class Rings with Prime Fields
81.5 Further Improvements in Implementing Residue Class Rings

82 An Example — Designing Arithmetic Operations
82.1 New Arithmetic Operations vs. New Objects
82.2 Designing new Multiplicative Objects

83 Library Files
83.1 FileTypes e e e
83.2 Finding Implementations inthe Library
83.3 Undocumented Variables

84 Interface to the GAP Help System
84.1 Installing and RemovingaHelpBook
84.2 ThemanualsixFile
84.3 TheHelpBookHandler
84.4 Introducing new Viewer for the OnlineHelp

85 Function-Operation-Attribute Triples
85.1 Key Dependent Operations v
85.2 InParent Attributes L e e
85.3 Operation Functions

86 Weak Pointers
86.1 Weak Pointer Objects
86.2 Low Level Access Functions for Weak Pointer Objects
86.3 Accessing Weak Pointer Objectsas Lists
86.4 Copying Weak Pointer Objects,

87 More about Stabilizer Chains
87.1 Generalized Conjugation Technique

87.2 The General Backtrack Algorithm with Ordered Partitions
87.3 Stabilizer Chains for Automorphisms Acting on Enumerators
References
Index

Chapter 1

Preface

Welcome to GAP. This is one of the manuals documenting the core part of GAP, the others being the
GAP Tutorial and HPC-GAP Reference Manual.

There is also a document CHANGES .md on the changes from earlier versions in the root directory.
This preface serves not only to introduce “The GAP Reference Manual”, but also as an introduction
to the whole system.

GAP stands for Groups, Algorithms and Programming. The name was chosen to reflect the origi-
nal aim of the system, which is introduced in this reference manual. Since that choice, the system has
become somewhat broader, and you will also find information about algorithms and programming for
other algebraic structures, such as semigroups and algebras.

This manual, the GAP Reference Manual contains the official definitions of GAP functions. It
should contain all the information needed to use GAP, and is not intended to be read cover-to-cover.

To get started a new user may first look at parts of the GAP Tutorial.

A lot of the functionality of the system and a number of contributed extensions are provided as
“GAP packages” which are developed independently of the core part of GAP and can be loaded into
a GAP session. Each package comes with a its own manual which is also available through the GAP
help system.

This manual is divided into chapters, sections and subsections. Chapter 2 describes the help sys-
tem, which provides access to all the manuals from a running GAP session. Chapter 3 gives technical
advice for running GAP. Chapter 4 introduces the GAP language, and the next chapters deal with the
environment provided by GAP for the user. These are followed by the main bulk of chapters which
are devoted to the various mathematical structures that GAP can handle.

Subsequent sections of this preface explain the structure of the system and provide copyright and
licensing information.

1.1 The GAP System

GARP is a free, open and extensible software package for computation in discrete abstract algebra. The
terms “free” and “open” describe the conditions under which the system is distributed -- in brief, it is
free of charge (except possibly for the immediate costs of delivering it to you), you are free to pass it
on within certain limits, and all of the workings of the system are open for you to examine and change.
Details of these conditions can be found in Section (Reference: Copyright and License).

The system is “extensible” in that you can write your own programs in the GAP language, and
use them in just the same way as the programs which form part of the system (the “library”). Indeed,

23

GAP - Reterence Manual 24

we actively support the contribution, refereeing and distribution of extensions to the system, in the
form of “GAP packages”. Further details of this can be found in Chapter (Reference: Using and
Developing GAP Packages), and on our website.

Development of GAP began at Lehrstuhl D fiir Mathematik, RWTH-Aachen, under the leader-
ship of Joachim Neubiiser in 1985. Version 2.4 was released in 1988 and version 3.1 in 1992. In
1997 coordination of GAP development, now very much an international effort, was transferred to
St Andrews. A complete internal redesign and almost complete rewrite of the system was completed
over the following years and version 4.1 was released in July 1999. A sign of the further internation-
alization of the project was the GAP 4.4 release in 2004, which has been coordinated from Colorado
State University, Fort Collins.

More information on the motivation and development of GAP to date,
can be found on our website in a section entitled “Some History of GAP”:
https://www.gap-system.org/Doc/History/history.html.

For those readers who have used an earlier version of GAP, an overview of the changes from
GAP 4.4 and a brief summary of changes from earlier versions is given in CHANGES.md file in the
main directory.

The system that you are getting now consists of a “core system” and a number of packages. The
core system consists of four main parts.

1. A kernel, written in C, which provides the user with

* automatic dynamic storage management, which the user needn’t bother about when pro-
gramming;

* aset of time-critical basic functions, e.g. “arithmetic”, operations for integers, finite fields,
permutations and words, as well as natural operations for lists and records;

* an interpreter for the GAP language, an untyped imperative programming language with
functions as first class objects and some extra built-in data types such as permutations and
finite field elements. The language supports a form of object-oriented programming, sim-
ilar to that supported by languages like C++ and Java but with some important differences.

* a small set of system functions allowing the GAP programmer to handle files and execute
external programs in a uniform way, regardless of the particular operating system in use.

* a set of programming tools for testing, debugging, and timing algorithms.

* a “read-eval-view” style user interface.

2. A much larger library of GAP functions that implement algebraic and other algorithms. Since
this is written entirely in the GAP language, the GAP language is both the main implementation
language and the user language of the system. Therefore a user can, as easily as the original
programmers, investigate and vary algorithms of the library and add new ones to it, first for their
own use and eventually for the benefit of all GAP users.

3. A library of group theoretical data which contains various libraries of groups, including the
library of small groups (containing all groups of order at most 2000, except those of order 1024)
and others. Large libraries of ordinary and Brauer character tables and Tables of Marks are
included as packages.

4. The documentation. This is available as on-line help, as printable files in PDF format and as
HTML for viewing with a Web browser.

https://www.gap-system.org/Doc/History/history.html

GAP - Reterence Manual 25

Also included with the core system are some test files and a few small utilities which we hope you
will find useful.

GAP packages are self-contained extensions to the core system. A package contains GAP
code and its own documentation and may also contain data files or external programs to which the
GAP code provides an interface. These packages may be loaded into GAP using the LoadPackage
(Reference: LoadPackage) command, and both the package and its documentation are then available
just as if they were parts of the core system. Some packages may be loaded automatically, when GAP
is started, if they are present. Some packages, because they depend on external programs, may only
be available on the operating systems where those programs are available (usually UNIX). You should
note that, while the packages included with this release are the most recent versions ready for release
at this time, new packages and new versions may be released at any time and can be easily installed in
your copy of GAP.

With GAP there are two packages (the library of ordinary and Brauer character tables, and the
library of tables of marks) which contain functionality developed from parts of the GAP core system.
These have been moved into packages for ease of maintenance and to allow new versions to be released
independently of new releases of the core system. The library of small groups should also be regarded
as a package, although it does not currently use the standard package mechanism. Other packages
contain functionality which has never been part of the core system, and may extend it substantially,
implementing specific algorithms to enhance its capabilities, providing data libraries, interfaces to
other computer algebra systems and data sources such as the electronic version of the Atlas of Finite
Group Representations; therefore, installation and usage of packages is recommended.

Further details about GAP packages can be found in chapter (Reference:
Using and Developing GAP Packages), and on the GAP website here:
https://wuw.gap-system.org/Packages/packages.html.

1.2 Authors and Maintainers

GAP is the work of very many people, many of whom still maintain parts of the system. A
complete list of authors, and an approximation to the current list of maintainers can be found
on the GAP website at https://www.gap-system.org/Contacts/People/authors.html and
https://www.gap-system.org/Contacts/People/modules.html. All GAP packages have their
own authors and maintainers. It should however be noted that some packages provide interfaces be-
tween GAP and an external program, a copy of which is included for convenience, and that, in these
cases, we do not claim that the package authors or maintainers wrote, or maintain, this external pro-
gram. Similarly, the system and some packages include large data libraries that may have been com-
puted by many people. We try to make clear in each case what credit is attributable to whom.

We have, for some time, operated a refereeing system for contributed packages, both to ensure the
quality of the software we distribute, and to provide recognition for the authors. We now consider this
to be a refereeing system for modules, and we would note, in particular that, although it does not use
the standard package interface, the library of small groups has been refereed and accepted on exactly
the same basis as the accepted packages.

We also include with this distribution a number of packages which have not (yet) gone through
our refereeing process. Some may be accepted in the future, in other cases the authors have chosen
not to submit them. More information can be found on our website (see Section 1.5).

https://www.gap-system.org/Packages/packages.html
https://www.gap-system.org/Contacts/People/authors.html
https://www.gap-system.org/Contacts/People/modules.html

GAP - Reterence Manual 26

1.3 Acknowledgements

Very many people have worked on, and contributed to, GAP over the years since its inception. On our
website you will find the prefaces to the previous releases, each of which acknowledges people who
have made special contributions to that release. Even so, it is appropriate to mention here Joachim
Neubiiser whose vision of a free, open and extensible system for computational algebra inspired GAP
in the first place, and Martin Schonert, who was the technical architect of GAP 3 and GAP 4.

1.4 Copyright and License

Copyright © (1987-2024) by the GAP Group,

incorporating the Copyright © 1999, 2000 by School of Mathematical and Computational Sci-
ences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland

being the Copyright © 1992 by Lehrstuhl D fiir Mathematik, RWTH, 52056 Aachen, Germany,
transferred to St Andrews on July 21st, 1997.

except for files in the distribution, which have an explicit different copyright statement. In par-
ticular, the copyright of packages distributed with GAP is usually with the package authors or their
institutions.

GAP is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version. For details, see the file LICENSE in the root directory of the GAP
distribution or see https://www.gnu.org/licenses/gpl.html.

If you obtain GAP please send us a short notice to that effect, e.g., an e-mail message to the
address support@gap-system.org. This helps us to keep track of the number of GAP users.

If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just
as you would cite another paper that you used (see below for a sample citation). Also we would
appreciate if you could inform us about such a paper, which we will add to the GAP bibliography.

Specifically, please refer to

[GAP] The GAP Group, GAP - Groups, Algorithms, and Programming,
Version 4.13.1; 2024 (https://www.gap-system.org)

You are permitted to modify and redistribute GAP, but you are not allowed to restrict further
redistribution. That is to say proprietary modifications will not be allowed. We want all versions of
GAP to remain free.

If you modify any part of GAP and redistribute it, you must supply a README document. This
should specify what modifications you made in which files. We do not want to take credit or be
blamed for your modifications.

Of course we are interested in all of your modifications. In particular we would like to see
bug-fixes, improvements and new functions. So again we would appreciate it if you would inform
us about all modifications you make.

In addition to the general copyright for GAP set forth above, the following terms apply to the
versions of GAP for Windows.

GAP for Windows is packaged with several packages from Cygwin (https://cygwin.com).
Files from Cygwin are provided under their respective licenses, which are included in the installation.
The GAP for Windows executables that we distribute are themselves released under the terms of the

https://www.gnu.org/licenses/gpl.html
mailto://support@gap-system.org
https://www.gap-system.org/Doc/Bib/bib.html
https://cygwin.com

GAP - Reterence Manual 27

GNU General Public License (GNU GPL); either version 2 of the License, or (at your option) any
later version.
Please contact support@gap-system.org if you need further information.

1.5 Further Information about GAP

Information about GAP is best obtained from the GAP website https://www.gap-system.org.
There you will find, amongst other things:

* directions to the sites from which you can download the current GAP distribution, all accepted
and deposited GAP packages, and a selection of other contributions.

* the GAP manual and an archive of the gap-forum mailing list, formatted for reading with a
Web browser, and indexed for searching.

¢ information about GAP developers, and about the email addresses available for comment, dis-
cussion and support.

We would particularly ask you to note the following things:

» The GAP Forum - an email discussion forum for comments, discussions or questions about
GAP. You must subscribe to the list before you can post to it, see the website for details. In
particular we will announce new releases in this mailing list.

* The email address support@gap-system.org to which you are asked to send any questions or
bug reports which do not seem likely to be of interest to the whole GAP Forum. Please give
a (short, if possible) self-contained excerpt of a GAP session containing both input and output
that illustrates your problem (including comments of why you think it is a bug) and state the
type of the machine, operating system, (compiler used, if UNIX/Linux) and the version of GAP
you are using (the first line after the GAP 4 banner starting GAP, Version 4...).

* We also ask you to send a brief message to support@gap-system. org when you install GAP.

* The correct form of citation of GAP, which we ask you use whenever you publish scientific
results obtained using GAP.

It finally remains for us to wish you all pleasure and success in using GAP, and to invite your
constructive comment and criticism.

The GAP Group,

2024-06-11

mailto://support@gap-system.org
https://www.gap-system.org
mailto://support@gap-system.org
mailto://support@gap-system.org

Chapter 2

The Help System

This chapter describes the GAP help system. The help system lets you read the documentation inter-
actively.

2.1 Invoking the Help

The basic command to read GAP’s documentation from within a GAP session is as follows.

?[book :]1[?]topic

For an explanation and some examples see (Tutorial: Help).

Note that the first question mark must appear in the first position after the gap> prompt. The
search strings book and topic are normalized in a certain way (see the end of this section for details)
before the search starts. This makes the search case insensitive and there can be arbitrary white space
after the first question mark.

When there are several manual sections that match the query a numbered list of topics is displayed.
These matches can be accessed with 7number.

There are some further specially handled commands which start with a question mark. They are
explained in Section 2.2.

By default GAP shows the help sections as text in the terminal (window), page by page if the
shown text does not fit on the screen. But there are several other choices to read (other formats of) the
documents: via a viewer for pdf files or via a web browser. This is explained below in Section 2.3.

Details of the string normalization process

Here is a precise description how the search strings book and topic are normalized before a
search starts: backslashes and double or single quotes are removed, parentheses and braces are sub-
stituted by blanks, non-ASCII characters are considered as ISO-Iatin] characters and the accented
letters are substituted by their non-accented counterpart. Finally white space is normalized.

2.2 Browsing through the Sections

Help books for GAP are organized in chapters, sections, and subsections. There are a few special
commands starting with a question mark (in the first position after the gap> prompt) which allow
browsing a book section or chapter wise.

7>

7<

28

GAP - Reterence Manual 29

The two help commands ?< and 7> allow one to browse through a whole help book. ?7< displays
the section or subsection preceding the previously shown (sub)section, and 7> takes you to the section
or subsection following the previously shown one.

>>

<<

7<< takes you back to the beginning of the current chapter. If you are already at the start of a
chapter 7<< takes you to the beginning of the previous chapter. ?>> takes you to the beginning of the
next chapter.

7-

°+

GAP remembers the last few sections that you have read. ?- takes you to the one that you have
read before the current one, and displays it again. Further applications of 7- take you further back in
this history. 7+ reverses this process, i.e., it takes you back to the section that you have read after the
current one. It is important to note that ?- and 7+ do not alter the history like the other help commands.

?books

This command shows a list of the books which are currently known to the help system. For each
book there is a short name which is used with the book part of the basic help query and there is a long
name which hopefully tells you what this book is about.

A short name which ends in (not loaded) refers to a GAP package whose documentation is
loaded but which needs a call of LoadPackage (76.2.1) before you can use the described functions.

?[book :]sections

7 [book :] [chapters]

These commands show tables of contents for all available, respectively the matching books. For
some books these commands show the same, namely the whole table of contents.

?

&

These commands redisplay the last shown help section. In the form 7& the next preferred help
viewer is used for the display (provided one has chosen several viewers), see SetHelpViewer (2.3.1)
below.

2.3 Changing the Help Viewer

Books of the GAP help system or package manuals can be available in several formats. Currently the
following formats occur (not all of them may be available for all books):

text This is used for display in the terminal window in which GAP is running. Complicated mathe-
matical expressions may not be easy to read in this format.

pdf Adobe’s pdf format. Can be used for printing and onscreen reading on most current systems
(with freely available software). Some manual books contain hyperlinks in this format.

HTML
The format of web pages. Can be used with any web browser. There may be hyperlink informa-
tion available which allows a convenient browsing through the book via cross-references. This
format has the problem that complicated formulae may be not be easy to read since there is no
syntax for formulae in HTML. (Some older manual books use special symbol fonts for formulae

GAP - Reterence Manual 30

and need a particular configuration of the web browser for correct display. Some manuals may
use technology for quite sophisticated formula display.)

Depending on your operating system and available additional software you can use several of these
formats with GAP’s help system. This is configured with the following command.

2.3.1 SetHelpViewer

> SetHelpViewer(viewerl, viewer2, ...) (function)

This command takes an arbitrary number of arguments which must be strings describing a viewer.
The recognized viewers are explained below. A call with no arguments shows the current setting.

The first given arguments are those with higher priority. So, if a help section is available in the
format needed by viewerl, this viewer is used. If not, availability of the format for viewer?2 is
checked and so on. Recall that the command 7& displays the last seen section again but with the next
possible viewer in your list, see 2.2.

The viewer "screen" (see below) is always silently appended since we assume that each help
book is available in text format.

If you want to change the default setting you can use a call of SetUserPreference(
"HelpViewers", [... 1); (the list in the second argument containing the viewers you want)
in your gap. ini file (see 3.2).

"screen"

This is the default setting. The help is shown in text format using the Pager (2.4.1) command.
Hint: Text versions of manuals are formatted assuming that your terminal displays at least 80
characters per line, if this is not the case some sections may look very bad. We suggest to
use a terminal in UTF-8 encoding with a fixed width font (this is the default on most modern
Linux/Windows/Mac systems anyway). Terminals in IS0-8859-X encoding will also work
reasonably well (so far, since we do not yet use many special characters which such terminals
could not display).

"firefox", "chrome", "mozilla", "netscape", "konqueror"
If a book is available in HTML format this is shown using the corresponding web browser.
How well this works, for example by using a running instance of this browser, depends on
your particular start script of this browser. (Note, that for some old books the browser must be
configured to use symbol fonts.)

"browser"
(for MS Windows) If a book is available in HTML format, it will be opened using the Windows
default application (typically, a web browser).

"links2", "w3m", "lynx"
If a book is available in HTML format this is shown using the text based "1inks2" (in graphics
mode), w3m or 1lynx web browser, respectively, inside the terminal running GAP. (Formulae in
some older books which use symbol fonts may be unreadable.)

"mac default browser", "browser", "safari", "firefox"
(for macOS) If a book is available in HTML format this is shown in a web browser. The options

GAP - Reterence Manual 31

"safari" and "firefox" use the corresponding browsers. The other two options use the
program default browser (which can be set in Safari’s preferences, in the "General" tab).

"Xpdf n
(on X window systems) If a book is available in pdf format it is shown with the onscreen viewer
program xpdf (which must be installed on your system). This is a nice program, once it is
running it is reused by GAP for the next displays of help sections.

"acroread"
If a book is available in pdf format it is shown with the onscreen viewer program acroread
(which must be available on your system). This program does not allow remote commands or
startup with a given page. Therefore the page numbers you have to visit are just printed on the
screen. When you are looking at several sections of the same book, this viewer assumes that
the acroread window still exists. When you go to another book a new acroread window is
launched.

"pdf viewer", "skim", "preview", "adobe reader"

(for macOS) If a book is available in pdf format this is shown in a pdf viewer. The options
"skim", "preview" and "adobe reader" use the corresponding viewers. The other two op-
tions use the pdf viewer which you have chosen to open pdf files from the Finder. Note that
only "Skim" seems to be capable to open a pdf file on a given page. For the other help viewers,
the page numbers where the information can be found will just be printed on the screen. None
of the help viewers seems to be capable of opening a pdf at a given named destination (i. e.,
jump to precisely the place where the information can be found). The pdf viewer "Skim" is
open source software, it can be downloaded from https://skim-app.sourceforge.io/.

"less" or "more"
This is the same as "screen" but additionally the user preferences "Pager" and
"PagerOptions" are set, see the section 2.4 for more details.

Please, send ideas for further viewer commands to support@gap-system. org.

2.4 The Pager Command

GAP contains a builtin pager which shows a text string which does not fit on the screen page by page.
Its functionality is very rudimentary and self-explaining. This is because (at least under UNIX) there
are powerful external standard programs which do this job.

24.1 Pager

> Pager(lines) (function)

This function can be used to display a text on screen using a pager, i.e., the text is shown page by
page.

There is a default builtin pager in GAP which has very limited capabilities but should work on any
system.

At least on a UNIX system one should use an external pager program like less or more. GAP
assumes that this program has a command line option +nr which starts the display of the text with line
number nr.

mailto://support@gap-system.org

GAP - Reterence Manual 32

Which pager is used can be controlled by setting the user preference "Pager". The default value
is "builtin" which means that the internal pager is used.

On UNIX systems you probably want to set the user preference "Pager" to the value "less" or
"more", you can do this for example in your gap.ini file (see 3.2). In that case you can also tell
GAP a list of standard options for the external pager, via the user preference "PagerOptions".
Example
SetUserPreference("Pager", "less");
SetUserPreference("PagerOptions", ["-f","-r","-a","-i","-M","-j2"]);

The argument I1ines can have one of the following forms:

1. astring (i.e., lines are separated by newline characters)

2. a list of strings (without newline characters) which are interpreted as lines of the text to be
shown

3. arecord with component lines as in 1. or 2. and optional further components
In case 3. currently the following additional components are used:

formatted
can be false or true. If set to true the builtin pager tries to show the text exactly as it is given
(avoiding GAP’s automatic line breaking),

start
must be a positive integer. This is interpreted as the number of the first line shown by the pager
(one may see the beginning of the text via back scrolling).

exitAtEnd
can be false or true. If set to true (the default), the builtin pager is terminated as soon as the
end of the list is shown; otherwise entering the Q key is necessary in order to return from the

pager.

The Pager command is used by GAP’s help system for displaying help sections in text format.
But, of course, it may be used for other purposes as well.

Example

gap> s6 := SymmetricGroup(6);;

gap> words := ["This", "is", "a", "very", "stupid", "example"];;
gap> 1 := List(s6, p-> Permuted(words, p));;

gap> Pager(List(1l, a-> JoinStringsWithSeparator(a," ")));;

Chapter 3

Running GAP

This chapter contains information about the command line options for GAP (see 3.1), about some
files in user specific GAP root directory (see 3.2) and about saving and loading a GAP workspace
(see 3.3).

3.1 Command Line Options

When you start GAP from a command line or from a script you may specify a number of options on
the command-line to change the default behaviour of GAP. All these options start with a hyphen -,
followed by a single letter. Options must not be grouped, e.g., gap -gq is invalid, use gap -g -q
instead. Some options require an argument, this must follow the option and must be separated by
whitespace, e.g., gap -m 256m, it is not correct to say gap -m256m instead. Certain boolean options
(-b, -q, -e, -1, -A, -D, -M, -T, -X, -Y) toggle the current value so that gap -b -b is equivalent to
gap and to gap -b -q -b -qetc.

GAP for UNIX will distinguish between upper and lower case options.

As described in the GAP installation instructions (see the INSTALL .md file in the GAP root direc-
tory), usually you will not execute GAP directly. Instead you will call a (shell) script, with the name
gap, which in turn executes GAP. This script sets some options which are necessary to make GAP
work on your system. This means that the default settings mentioned below may not be what you
experience when you execute GAP on your system.

During a GAP session, one can find the current values of command line options in the record
GAPInfo.CommandLineOptions (see GAPInfo (3.5.1)), whose component names are the command
line options (without the leading -).

-A By default, some needed and suggested GAP packages (see 76) are loaded, if present, into the
GAP session when it starts. This option disables (actually toggles) the loading of suggested
packages, which can be useful for debugging or testing. The needed packages (and their needed
packages, and so on) are loaded in any case.

-b tells GAP to suppress the banner. That means that GAP immediately prints the prompt. This is
useful when, after a while, you get tired of the banner. This option can be repeated to enable the
banner; each -b toggles the state of banner display.

-c gapcode
tells GAP to execute the given GAP code as if it was entered into a temporary file which then is

33

GAP - Reterence Manual 34

processed together with the other files given to GAP (see the explanation at the end of this list
for further details on how filenames are processed).

The -D option tells GAP to print short messages when it is reading files or loading modules.
This option may be repeated to toggle this behavior on and off. The message,

Example
#I READ_GAP_ROOT: loading ’lib/kernel.g’ as GAP file

tells you that GAP has started to read the library file 1ib/kernel.g.

Example
#I READ_GAP_ROOT: loading ’lib/kernel.g’ statically

tells you that GAP has used the compiled version of the library file 1ib/kernel .g. This com-
piled module was statically linked to the GAP kernel at the time the kernel was created.

Example
#I READ_GAP_ROOT: loading ’lib/kernel.g’ dynamically

tells you that GAP has loaded the compiled version of the library file 1ib/kernel.g. This
compiled module was dynamically loaded to the GAP kernel at runtime from a corresponding
.so file.

Obviously, this is a debugging option and most users will not need it.

If your GAP installation uses the readline library for command line editing (see 6.9), this
may be disabled by using -E option. This option may be repeated to toggle this behavior
on and off. If your GAP installation does not use the readline library (you can check by
IsBound (GAPInfo.UseReadline) ; if this is the case), this option will have no effect at all.

tells GAP not to quit when receiving a CTRL-D on an empty input line (see 6.4.1). This option
should not be used when the input is a file or pipe. This option may be repeated to toggle this
behavior on and off.

tells GAP to enable the line editing and history (see 6.8).

In general line editing will be enabled if the input is connected to a terminal. There are rare
circumstances, for example when using a remote session with a corrupted telnet implementation,
when this detection fails. Try using -£ in this case to enable line editing. This option does not
toggle; you must use -n to disable line editing.

tells GAP to print a message every time a full garbage collection is performed. (This is available
only if the GASMAN garbage collector is used, see 7.12.1.)

Example
#G FULL 44580/2479kb live 57304/4392kb dead 734/4096kb free

For example, this tells you that there are 44580 live objects that survived a full garbage col-
lection, that 57304 unused objects were reclaimed by it, and that 734 kilobytes from a total
allocated memory of 4096 kilobytes are available afterwards.

GAP - Reterence Manual 35

-g -8

If you give the option -g twice, GAP prints a information message every time a partial or full
garbage collection is performed. (This is available only if the GASMAN garbage collector is used,
see 7.12.1.) The message,

Example
#G PART 9405/961kb+live 7525/1324kb+dead 2541/4096kb free

for example, tells you that 9405 objects survived the partial garbage collection and 7525 objects
were reclaimed, and that 2541 kilobytes from a total allocated memory of 4096 kilobytes are
available afterwards.

-h tells GAP to print a summary of all available options (-h is mnemonic for “help”). GAP exits
after printing the summary, all other options are ignored.
-K memory

is like the -o option. But while the latter actually allocates more memory if the system allows
it and then prints a warning inside a break loop the -K options tells GAP not even to try to
allocate more memory. Instead GAP just exits with an appropriate message. The default is that
this feature is switched off. You have to set it explicitly when you want to enable it.

-L filename

The option -L tells GAP to load a saved workspace. See section 3.3. (This is available only if
the GASMAN garbage collector is used, see 7.12.1.)

-1 path_list

can be used to set or modify GAP’s list of root directories (see 9.2). The defaultif no -1 option
is given is the current directory ./. This option can be used several times. Depending on the
-r option a further user specific path is prepended to the list of root directories (the path in
GAPInfo.UserGapRoot).

path_list should be a list of directories separated by semicolons. No whitespace is permit-
ted before or after a semicolon. If path_list does not start or end with a semicolon, then
path_list replaces the existing list of root directories. If path_list starts with a semicolon,
then path_list is appended to the existing list of root directories. If path_list ends with
a semicolon and does not start with one, then the new list of root directories is the concate-
nation of path_list and the existing list of root directories. After GAP has completed its
startup procedure and displays the prompt, the list of root directories can be seen in the variable
GAPInfo.RootPaths, see GAPInfo (3.5.1).

Usually this option is used inside a startup script to specify where GAP is installed on the
system. The -1 option can also be used by individual users to tell GAP about privately installed
modifications of the library, additional GAP packages and so on. Section 9.2 explains how
several root paths can be used to do this.

GAP will attempt to read the file root_dir/1ib/init.g during startup where root_dir is
one of the directories in its list of root directories. If GAP cannot find its init.g file it will
print the following warning.

Example
gap: hmm, I cannot find ’lib/init.g’ maybe use option ’-1 <gaproot>’?

GAP - Reterence Manual 36

It is not possible to use GAP without the library files, so you must not ignore this warning. You
should leave GAP and start it again, specifying the correct root path using the -1 option.

tells GAP not to check for, nor to use, compiled versions of library files. This option may be
repeated to toggle this behavior on and off.

memory

tells GAP to allocate memory bytes at startup time. If the last character of memory is k or K it is
taken as kilobytes, if the last character is m or M memory is taken as megabytes and if it is g or G
it is taken as gigabytes.

This amount of memory should be large enough so that computations do not require too many
garbage collections. On the other hand, if GAP allocates more memory than is physically
available, it will spend most of the time paging.

tells GAP to disable the line editing and history (see 6.8).

You may want to do this if the command line editing is incompatible with another program that
is used to run GAP. For example if GAP is run from inside a GNU Emacs shell window, -n
should be used since otherwise every input line will be echoed twice, once by Emacs and once
by GAP. This option does not toggle; you must use -f to enable line editing.

disables loading obsolete variables (see Chapter 77). This option is used mainly for testing
purposes, for example in order to make sure that a GAP package or one’s own GAP code does
not rely on the obsolete variables.

memory

tells GAP to allocate at most memory bytes without asking. The option argument memory is
specified as with the -m option.

If more than this amount is required during the GAP session, GAP prints an error message and
enters a break loop. In that case you can enter return; which implicitly doubles the amount
given with this option.

tells GAP to be quiet. This means that GAP displays neither the banner nor the prompt gap>.
This is useful if you want to run GAP as a filter with input and output redirection and want to
avoid the banner and the prompts appearing in the output file. This option may be repeated to
disable quiet mode; each -q toggles quiet mode.

The option -R tells GAP not to load a saved workspace previously specified via the -L option.
This option does not toggle.

The option -r tells GAP to ignore any user specific configuration files. In particular, the user
specific root directory GAPInfo.UserGapRoot is not added to the GAP root directories and so
gap.ini and gaprc files that may be contained in that directory are not read, see 3.2. Multiple
-1 options toggle this behaviour.

-S memory

With this option GAP does not use sbrk to get memory from the operating system. Instead it
uses mmap, malloc or some other command for the amount given with this option to allocate
space for the GASMAN memory manager. Usually GAP does not really use all of this memory,
the options -m, -o, -K still work as documented. This feature assumes that the operating system

GAP - Reterence Manual 37

only assigns physical memory to the GAP process when it is accessed, so that specifying a large
amount of memory with -s should not cause any performance problem. The advantage of using
this option is that GAP can work together with kernel modules which allocate a lot of memory
with malloc.

The option argument memory is specified as with the -m option.

-T suppresses the usual break loop behaviour of GAP. With this option GAP behaves as if the user
quit immediately from every break loop, and also suppresses displaying any error backtrace.
This is intended for automated testing of GAP. This option may be repeated to toggle this
behavior on and off.

-x length
With this option you can tell GAP how long lines are. GAP uses this value to decide when to
split long lines. After starting GAP you may use SizeScreen (6.12.1) to alter the line length.

The default value is 80, unless another value can be obtained from the Operating System, which
is the right value if you have a standard terminal application. If you have a larger monitor, or
use a smaller font, or redirect the output to a printer, you may want to increase this value.

-y length
With this option you can tell GAP how many lines your screen has. GAP uses this value to
decide after how many lines of on-line help it should wait. After starting GAP you may use
SizeScreen (6.12.1) to alter the number of lines.

The default value is 24, unless another value can be obtained from the Operating System, which
is the right value if you have a standard terminal application. If you have a larger monitor, or
use a smaller font, or redirect the output to a printer, you may want to increase this value.

filename ...

Further arguments are taken as filenames of files that are read by GAP during startup, after the
system and private init files are read, but before the first prompt is printed. Filenames ending
with .tst are processed by Test (7.10.2), all other files by Read (9.7.1). These files and also
commands specified via the -c option are processed in the order in which they appear on the
command line. If a file cannot be opened or if executing the code in it raises an error, then the
usual error handling for Read (9.7.1) respectively Test (7.10.2) kicks in. If this enters a break
loop, then exiting that break loop also exits GAP.

Additional options, such as -C, -P and-p are used internally by the gac script (see 76.3.11) and/or
on specific operating systems.

3.2 The gap.ini and gaprec files

When you start GAP, it looks for files with the names gap.ini and gaprc in its root directories (see
9.2), and reads the first gap.ini and the first gaprc file it finds. These files are used for certain
initializations, as follows.

The file gap.ini is read early in the startup process. Therefore, the parameters set in this file
can influence the startup process, such as which packages are automatically loaded (see LoadPackage
(76.2.1)) and whether library files containing obsolete variables are read (see Chapter 77). On the
other hand, only calls to a restricted set of GAP functions are allowed in a gap.ini file. Usually,

GAP - Reterence Manual 38

it should only contain calls of SetUserPreference (3.2.3). This file can be generated (or updated
when new releases introduce further user preferences) with the command WriteGapIniFile (3.2.3).
This file is read whenever GAP is started, with or without a workspace.

The file gaprc is read after the startup process, before the first input file given on the command
line (see 3.1). So the contents of this file cannot influence the startup process, but all GAP library
functions can be called in this file. When GAP is started with a workspace then the file is read only if
no gaprec file had been read before the workspace was created. (With this setup, it is on the one hand
possible that administrators provide a GAP workspace for several users such that the user’s gaprc
file is read when GAP is started with the workspace, and on the other hand one can start GAP, read
one’s gaprec file, save a workspace, and then start from this workspace without reading one’s gaprc
file again.)

Note that by default, the user specific GAP root directory GAPInfo.UserGapRoot is the first GAP
root directory. So you can put your gap.ini and gaprc files into this directory.

This mechanism substitutes the much less flexible reading of a users .gaprc file in versions of
GAP up to 4.4. For compatibility this . gaprc file is still read if the directory GAPInfo.UserGapRoot
does not exist, see 77.5 how to migrate your old setup.

3.2.1 The gap.ini file

The file gap.ini is read after the declaration part of the GAP library is read, before the declaration
parts of the packages needed and suggested by GAP are read, and before the implementation parts of
GAP and of the packages are read.

The file gap.ini is expected to consist of calls to the function SetUserPreference (3.2.3), see
Section SetUserPreference (3.2.3).

Since the file gap.ini is read before the implementation part of GAP is read, not all GAP
functions may be called in the file. Assignments of numbers, lists, and records are admissible as
well as calls to basic functions such as Concatenation (21.20.1) and JoinStringsWithSeparator
(27.7.20).

Note that the file gap. ini is read also when GAP is started with a workspace.

3.2.2 The gaprec file

If a file gaprc is found it is read after GAP’s init.g, but before any of the files mentioned on the
command line are read. You can use this file for your private customizations. (Many users may be
happy with using just user preferences in the gap. ini file (see above) for private customization.) For
example, if you have a file containing functions or data that you always need, you could read this from
gaprc. Or if you find some of the names in the library too long, you could define abbreviations for
those names in gaprc. The following sample gaprc file does both.

Example
Read("/usr/you/dat/mygroups.grp");
Ac := Action;
AcHom := ActionHomomorphism;
RepAc := RepresentativeAction;

Note that only one gaprec file is read when GAP is started. When a workspace is created in a GAP
session after a gaprc file has been read then no more gaprc file will be read when GAP is started
with this workspace.

GAP - Reterence Manual 39

Also note that the file must be called gaprc. If you use a Windows text editor, in particular if
your default is not to show file suffixes, you might accidentally create a file gaprc.txt or gaprc.doc
which GAP will not recognize.

3.2.3 Configuring User preferences

> SetUserPreference([package, Jname, value) (function)
> UserPreference([package, Jname) (function)
> ShowUserPreferences(packagel, package2, ...) (function)
> WriteGapIniFile([dir][,] [ignorecurrent]) (function)

Some aspects of the behaviour of GAP can be customized by the user via user preferences. Ex-
amples include the way help sections are displayed or the use of colors in the terminal.

User preferences are specified via a pair of strings, the first is the (case insensitive) name of a
package (or "GAP" for the core GAP library) and the second is some arbitrary case sensitive string.

User preferences can be set to some value with SetUserPreference. The current value of a
user preference can be found with UserPreference. In both cases, if no package name is given the
default "GAP" is used. If a user preference is not known or not set then UserPreference returns
fail.

The stored values of user preferences are always immutable, see Section 12.6.

The function ShowUserPreferences with no argument shows in a pager an overview of all
known user preferences together with some explanation and the current value. If one or more strings
packagel, ... are given then only the user preferences for these packages are shown. The Browse
package provides the function BrowseUserPreferences (Browse: BrowseUserPreferences) which
gives an overview of the known user preferenes and also admits editing the values of the preferences.

The easiest way to make use of user preferences is probably to use the function
WriteGapIniFile, usually without argument. This function creates a file gap.ini in your user
specific GAP root directory (GAPInfo.UserGapRoot). If such a file already exists the function will
make a backup of it first. This newly created file contains descriptions of all known user preferences
and also calls of SetUserPreference for those user preferences which currently do not have their
default value. You can then edit that file to customize (further) the user preferences for future GAP
sessions.

Should a later version of GAP or some packages introduce new user preferences then you can
call WwriteGapIniFile again since it will set the previously known user preferences to their current
values.

Optionally, a different directory for the resulting gap . ini file can be specified as argument dir to
WriteGapIniFile. Another optional argument is the boolean value true, if this is given, the settings
of all user preferences in the current session are ignored.

Note that your gap.ini file is read by GAP very early during its startup process. A conse-
quence is that the value argument in a call of SetUserPreference must be some very basic GAP
object, usually a boolean, a number, a string or a list of those. A few user preferences support
more complicated settings. For example, the user preference "UseColorPrompt" admits a record
as its value whose components are available only after the GAPDoc package has been loaded,
see ColorPrompt (3.6.1). If you want to specify such a complicated value, then move the correspond-
ing call of SetUserPreference from your gap.ini file into your gaprc file (also in the directory
GAPInfo.UserGapRoot). This file is read much later.

GAP - Reterence Manual 40

Example
gap> SetUserPreference("Pager", "less");
gap> SetUserPreference("PagerOptions",
> ["-f", "-r", "-a", "-i", "-M", "-j2"]);
gap> UserPreference("Pager");
"less"

The first two lines of this example will cause GAP to use the programm less as a pager. This is
highly recommended if 1less is available on your system. The last line displays the current setting.

3.2.4 DeclareUserPreference

> DeclareUserPreference(record) (function)

This function can be used (also in packages) to introduce new user preferences. It declares a user
preference, determines a default value and contains documentation of the user preference. After dec-
laration a user preference will be shown with ShowUserPreferences (3.2.3) and WriteGapIniFile
(3.2.3).

When this declaration is evaluated it is checked, if this user preference is already set in the current
session. If not the value of the user preference is set to its default. (Do not use fail as default value
since this indicated that a user preference is not set.)

The argument record of DeclareUserPreference must be a record with the following compo-
nents.

name
a string or a list of strings, the latter meaning several preferences which belong together,

description
a list of strings describing the preference(s), one string for each paragraph; if several preferences
are declared together then the description refers to all of them,

default
the default value that is used, or a function without arguments that computes this default value;
if several preferences are declared together then the value of this component must be the list of
default values for the individual preferences.

The following components of record are optional.

check
a function that takes a value as its argument and returns either true or false, depending on
whether the given value is admissible for this preference; if several preferences are declared
together then the number of arguments of the function must equal the length of the name list,

values
the list of admissible values, or a function without arguments that returns this list,

multi
true or false, depending on whether one may choose several values from the given list or just
one; needed (and useful only) if the values component is present,

GAP - Reterence Manual 41

package
the name of the GAP package to which the preference is assigned; if the declaration happens
inside a file that belongs to this package then the value of this component is computed, using
GAPInfo.PackageCurrent; otherwise, the default value for package is "GAP",

omitFromGapIniFile
if the value is true then this user preference is ignored by WriteGapIniFile (3.2.3).
Example
gap> UserPreference("MyFavouritePrime") ;
fail
gap> DeclareUserPreference(rec(
> name:= "MyFavouritePrime",
> description:= ["is not used, serves as an example"],
> default:= 2,
> omitFromGapIniFile:= true));
gap> UserPreference("MyFavouritePrime");
2
gap> SetUserPreference("MyFavouritePrime", 17);
gap> UserPreference("MyFavouritePrime");
17

3.2.5 User Preferences Defined by GAP

Here is the list of those user preferences that are currently declared via DeclareUserPreference
(3.2.4) for GAP itself. The preferences that are declared for GAP packages belong to the documenta-
tion of these packages.

Autocompleter

Set how names are filtered during tab-autocomplete, this can be: "default": case-sensitive
matching. "case-insensitive": case-insensitive matching, or a record with two components
named filter and completer, which are both functions which take two arguments. filter
takes a list of names and a partial identifier and returns all the members of names which are a
valid extension of the partial identifier. completer takes a list of names and a partial identifier
and returns the partial identifier as extended as possible (it may also change the identifier, for
example to correct the case, or spelling mistakes), or returns fail to leave the existing partial
identifier.

This preference is ignored if GAP was not compiled with readline support.

Default: "default".

Editor, EditorOptions
Determines the editor and options (used by GAP’s Edit (6.10.1) command). Under macOS, the
value "open" for Editor will work. For further options, see the GAP help for Edit (6.10.1).
If you want to use the editor defined in your (shell) environment then leave the Editor and
EditorOptions preferences empty.

The defaults are computed at runtime.
ExcludeFromAutoload

These packages are not loaded at GAP startup. This doesn’t work for packages which are
needed by the GAP library, or which are already loaded in a workspace.

GAP - Reterence Manual 42

Default: "".

HelpViewers, XpdfOptions, XdviOptions
Here you can choose your preferred help viewers. See the help for SetHelpViewer (2.3.1) for
further options.

Try HelpViewers:= ["screen", "firefox", "xpdf" J;.

(For "screen" we also suggest to set the Pager entry to "less".)

Defaults: [["screen"], "", ""].
HistoryBackwardSearchSkipIdenticalEntries

When a command is executed multiple times, it is also stored in history multiple times. Setting
this option to true skips identical entries when searching backwards in history.

Admissible values: true, false.
Default: false.
HistoryMaxLines, SaveAndRestoreHistory
HistoryMaxLines is the maximal amount of input lines held in GAP’s command line history.

If SaveAndRestoreHistory is true then GAP saves its command line history before termi-
nating a GAP session, and prepends the stored history when GAP is started. If this is en-
abled it is suggested to set HistoryMaxLines to some finite value. It is also possible to set
HistoryMaxLines to infinity (18.2.1) to keep arbitrarily many lines.

These preferences are ignored if GAP was not compiled with readline support.
Defaults: [10000, true].
InfoPackageloadinglevel

Info messages concerning package loading up to this level are printed. The level can be changed
in a running session using SetInfolLevel (7.4.3).

Admissible values: 1, 2, 3, 4.
Default: 1.
MaxBitsIntView

Maximal bit length of integers to View unabbreviated. Default is about 30 lines of a 80 character
wide terminal. Set this to O to avoid abbreviated ints.

Default: 8000.
PartialPermDisplayLimit, NotationForPartialPerms
options for the display of partial perms
Defaults: [100, "component"].
TransformationDisplaylLimit, NotationForTransformations
options for the display of transformations

Defaults: [100, "input"].

GAP - Reterence Manual 43

PackagesToIgnore
These packages are not regarded as available. This doesn’t work for packages which are needed
by the GAP library, or which are already loaded in a workspace.

Default: "".

PackagesToLoad
A list of names of packages which should be loaded during startup. For backwards compatibil-
ity, the default lists most of packages that were autoloaded in GAP 4.4 (add or remove packages
as you like).

Default: ["autpgrp", "alnuth", "crisp", "ctbllib", "factint", "fga",
"irredsol", "laguna", "polenta", "polycyclic", "resclasses", "sophus",
"tomlib"].

Pager, PagerOptions
For displaying help pages on screen and other things GAP has a rudimentary builtin pager.
We recommend using a more sophisticated external program. For example, when you have the
program less on your computer we recommend:

Pager := "less";

PageropthDS = [Il_fll II_I-II Il_all ||_i" ||_MH ||_j2l|] .

If you want to use more, we suggest to use the -f option. If you want to use the pager defined
in your environment then leave the Pager and PagerOptions preferences empty.

The defaults are computed at runtime.

ReadObsolete
May be useful to say false here to check if you are using commands which may vanish in a
future version of GAP

Admissible values: true, false.

Default: true.

ReproducibleBehaviour

This preference disables code in GAP which changes behaviour based on time spent, and there-
fore can produce different results depending on how much time is taken by other programs
running on the same computer. This option may lead to slower or lower-quality results. Note
that many algorithms in GAP use the global random number generator, which is NOT affected
by this option. This only tries to ensure the same version of GAP, with the same package ver-
sions loaded, on the same machine, running the same code, in a fresh GAP session, will produce
the same results.

Admissible values: true, false.
Default: false.
ShortBanners

If this option is set to true, package banners printed during loading will only show the name,
version and description of a package.

Admissible values: true, false.

Default: false.

GAP - Reterence Manual 44

UseColorPrompt
In a color capable terminal (almost any terminal application) you can run GAP such that the
prompts, the input and output are distinguished by colors. Options are true, false or some
record as explained in the help section for ColorPrompt (3.6.1).

Default: true.

UseColorsInTerminal
Almost all current terminal emulations support color display, setting this to true implies a
default display of most manuals with color markup. It may influence the display of other things
in the future.

Admissible values: true, false.

Default: true.

ViewLength
A bound for the number of lines printed when Viewing some large objects.

Default: 3.

3.3 Saving and Loading a Workspace

GAP workspace files are binary files that contain the data of a GAP session. Currently saving and
loading workspace files are supported only when the GASMAN garbage collector is used, see Section
7.12.1.

One can produce a workspace file with SaveWorkspace (3.3.1), and load it into a new GAP
session using the -L command line option, see Section 3.1.

One purpose of workspace files is of course the possibility to save a “snapshot” image of the
current GAP workspace in a file.

The recommended way to start GAP is to load an existing workspace file, because this reduces the
startup time of GAP drastically. So if you have installed GAP yourself then you should think about
creating a workspace file immediately after you have started GAP, and then using this workspace file
later on, whenever you start GAP. If your GAP installation is shared between several users, the system
administrator should think about providing such a workspace file.

3.3.1 SaveWorkspace

> SaveWorkspace (filename) (function)

will save a “snapshot” image of the current GAP workspace in the file filename. This image then
can be loaded by another copy of GAP which then will behave as at the point when SaveWorkspace
was called.

Example

gap> a:=1;

gap> SaveWorkspace("savefile");
true

gap> quit;

SaveWorkspace can only be used at the main gap> prompt. It cannot be included in the body of
a loop or function, or called from a break loop.

GAP - Reterence Manual 45

3.4 Testing for the System Architecture

34.1 ARCH_IS_UNIX

> ARCH_IS_UNIX () (function)

tests whether GAP is running on a UNIX system (including macOS).

3.4.2 ARCH_IS_MAC_OS_X

> ARCH_IS_MAC_0S_X () (function)

tests whether GAP is running on macOS. Note that on macOS, also ARCH_IS_UNIX (3.4.1) will
be true.
3.43 ARCH_IS_WINDOWS
> ARCH_IS_WINDOWS() (function)
tests whether GAP is running on a Windows system without standard POSIX tools available (such
as a shell).
344 ARCH_IS_WSL

> ARCH_IS_WSL () (function)

tests whether GAP is running on a Windows system inside the *Windows Subsystem for Linux’.
Note that in this case ARCH_IS_UNIX (3.4.1) will be true, and in most situations WSL can be treated
identically to Linux.

3.5 Global Values that Control the GAP Session

3.5.1 GAPInfo

> GAPInfo (global variable)

Several global values control the GAP session, such as the command line, the architecture, or
the information about available and loaded packages. Many of these values are accessible as compo-
nents of the global record GAPInfo. Typically, these components are set and read in low level GAP
functions, so changing the values of existing components of GAPInfo “by hand” is not recommended.

Important components are documented via index entries, try the input ?7?GAPInfo for getting an
overview of these components.

3.6 Coloring the Prompt and Input

GAP provides hooks for functions which are called when the prompt is to be printed and when an
input line is finished.
An example of using this feature is the following function.

GAP - Reterence Manual 46

3.6.1 ColorPrompt

> ColorPrompt(bool[, optrec]) (function)

ColorPrompt changes GAP’s user interface: After calling ColorPrompt (true) ;, the prompts
and the user input are displayed in colors different from the color that is used for the output. This is
also the default for a GAP session. Switch off these colorings with ColorPrompt (false) ;.

Note that colors will only work if your terminal emulation in which you run GAP understands
the so called ANSI color escape sequences —almost all terminal emulations on current UNIX/Linux
(xterm, rxvt, konsole, ...) systems do so.

The colors shown depend on the terminal configuration and cannot be forced from an application.
If your terminal follows the ANSI conventions you see the standard prompt in bold blue and the break
loop prompt in bold red, as well as your input in red.

If you prefer to switch off colors for prompts and input at the start of your GAP sessions, put a call
of SetUserPreference("UseColorPrompt", false); in your gap.ini file. If you want a more
complicated setting as explained below then put your SetUserPreference ("UseColorPrompt",
rec(...)); call into your gaprc file.

The optional second argument optrec allows one to further customize the behaviour. It must be
a record from which the following components are recognized:

MarkupStdPrompt
a string or no argument function returning a string containing the escape sequence used for the
main prompt gap> .

MarkupContPrompt
a string or no argument function returning a string containing the escape sequence used for the
continuation prompt > .

MarkupBrkPrompt
a string or no argument function returning a string containing the escape sequence used for the
break prompt brk...> .

MarkupInput
a string or no argument function returning a string containing the escape sequence used for user
input.

TextPrompt
a no argument function returning the string with the text of the prompt, but without any escape
sequences. The current standard prompt is returned by CPROMPT (). But note that changing the
standard prompts makes the automatic removal of prompts from input lines impossible (see 6.2).

PrePrompt
a function called before printing a prompt.

Here is an example.

LoadPackage ("GAPDoc") ;
timeSHOWMIN := 100;
ColorPrompt (true, rec(
usually cyan bold, see 7TextAttr

GAP - Reterence Manual 47

MarkupStdPrompt := Concatenation(TextAttr.bold, TextAttr.6),
MarkupContPrompt := Concatenation(TextAttr.bold, TextAttr.6),
PrePrompt := function()

show the ’time’ automatically if at least timeSHOWMIN

if CPROMPT() = "gap> " and time >= timeSHOWMIN then

Print("Time of last command: ", time, " ms\n");

fi;

end));

Chapter 4

The Programming Language

This chapter describes the GAP programming language. It should allow you, in principle, to predict
the result of each and every input. In order to know what we are talking about, we first have to look
more closely at the process of interpretation and the various representations of data involved.

4.1 Language Overview

First we have the input to GAP, given as a string of characters. How those characters enter GAP
is operating system dependent, e.g., they might be entered at a terminal, pasted with a mouse into a
window, or read from a file. The mechanism does not matter. This representation of expressions by
characters is called the external representation of the expression. Every expression has at least one
external representation that can be entered to get exactly this expression.

The input, i.e., the external representation, is transformed in a process called reading to an internal
representation. At this point the input is analyzed and inputs that are not legal external representations,
according to the rules given below, are rejected as errors. Those rules are usually called the syntax of
a programming language.

The internal representation created by reading is called either an expression or a statement. Later
we will distinguish between those two terms. However for now we will use them interchangeably. The
exact form of the internal representation does not matter. It could be a string of characters equal to the
external representation, in which case the reading would only need to check for errors. It could be a
series of machine instructions for the processor on which GAP is running, in which case the reading
would more appropriately be called compilation. It is in fact a tree-like structure.

After the input has been read it is again transformed in a process called evaluation or execution.
Later we will distinguish between those two terms too, but for the moment we will use them inter-
changeably. The name hints at the nature of this process, it replaces an expression with the value
of the expression. This works recursively, i.e., to evaluate an expression first the subexpressions are
evaluated and then the value of the expression is computed from those values according to rules given
below. Those rules are usually called the semantics of a programming language.

The result of the evaluation is, not surprisingly, called a value. Again the form in which such a
value is represented internally does not matter. It is in fact a tree-like structure again.

The last process is called printing. It takes the value produced by the evaluation and creates an
external representation, i.e., a string of characters again. What you do with this external representation
is up to you. You can look at it, paste it with the mouse into another window, or write it to a file.

48

GAP - Reterence Manual 49

Lets look at an example to make this more clear. Suppose you type in the following string of 8
characters

1+ 2 % 3

GAP takes this external representation and creates a tree-like internal representation, which we
can picture as follows

+

/ \

1 *
/\
2 3

This expression is then evaluated. To do this GAP first evaluates the right subexpression 2*3.
Again, to do this GAP first evaluates its subexpressions 2 and 3. However they are so simple that they
are their own value, we say that they are self-evaluating. After this has been done, the rule for * tells
us that the value is the product of the values of the two subexpressions, which in this case is clearly 6.
Combining this with the value of the left operand of the +, which is self-evaluating, too, gives us the
value of the whole expression 7. This is then printed, i.e., converted into the external representation
consisting of the single character 7.

In this fashion we can predict the result of every input when we know the syntactic rules that
govern the process of reading and the semantic rules that tell us for every expression how its value is
computed in terms of the values of the subexpressions. The syntactic rules are given in sections 4.2,
4.3,4.4,4.5, and 4.6, the semantic rules are given in sections 4.7, 4.8, 4.12, 4.13, 4.14, 4.15, 4.15.1,
4.15.2,4.15.3,4.15.4, 4.15.5,4.15.6, 4.11, and the chapters describing the individual data types.

4.2 Lexical Structure

Most input of GAP consists of sequences of the following characters.
Digits, uppercase and lowercase letters, SPACE, TAB, NEWLINE, RETURN and the special char-
acters

n) () *
. . <

—
)
|
A~ +
(o)

It is possible to use other characters in identifiers by escaping them with backslashes, but we do
not recommend the use of this feature. Inside strings (see section 4.3 and chapter 27) and comments
(see 4.4) the full character set supported by the computer is allowed.

4.3 Symbols

The process of reading, i.e., of assembling the input into expressions, has a subprocess, called scan-
ning, that assembles the characters into symbols. A symbol is a sequence of characters that form a

GAP - Reterence Manual 50

lexical unit. The set of symbols consists of keywords, identifiers, strings, integers, and operator and
delimiter symbols.

A keyword is areserved word (see 4.5). An identifier is a sequence of letters, digits and underscores
(or other characters escaped by backslashes) that contains at least one non-digit and is not a keyword
(see 4.6). An integer is a sequence of digits (see 14), possibly prepended by - and + sign characters.
A string is a sequence of arbitrary characters enclosed in double quotes (see 27).

Operator and delimiter symbols are

+ - * / - - !.
= <> < <= > >= I[
1= . .. -> s ; [

] { } () :

Note also that during the process of scanning all whitespace is removed (see 4.4).

4.4 Whitespaces

The characters SPACE, TAB, NEWLINE, and RETURN are called whitespace characters. Whitespace is
used as necessary to separate lexical symbols, such as integers, identifiers, or keywords. For example
Thorondor is a single identifier, while Th or ondor is the keyword or between the two identifiers
Th and ondor. Whitespace may occur between any two symbols, but not within a symbol. Two or
more adjacent whitespace characters are equivalent to a single whitespace. Apart from the role as
separator of symbols, whitespace characters are otherwise insignificant. Whitespace characters may
also occur inside a string, where they are significant. Whitespace characters should also be used freely
for improved readability.

A comment starts with the character #, which is sometimes called sharp or hatch, and continues to
the end of the line on which the comment character appears. The whole comment, including # and the
NEWLINE character is treated as a single whitespace. Inside a string, the comment character # loses
its role and is just an ordinary character.

For example, the following statement

if i<0 then a:=-i;else a:=i;fi;

is equivalent to

if 1 < 0 then # if i is negative

a := -i; # take its additive inverse
else # otherwise

a := i, # take itself
fi;

(which by the way shows that it is possible to write superfluous comments). However the first
statement is not equivalent to

ifi<Othena:=-i;elsea:=i;fi;

since the keyword if must be separated from the identifier i by a whitespace, and similarly then
and a, and else and a must be separated.

GAP - Reterence Manual 51

4.5 Keywords

Keywords are reserved words that are used to denote special operations or are part of statements. They
must not be used as identifiers. The list of keywords is contained in the GAPInfo.Keywords compo-
nent of the GAPInfo record (see 3.5.1). We will show how to print it in a nice table, demonstrating at
the same time some list manipulation techniques:

Example

gap> keys:=SortedList(GAPInfo.Keywords);; l:=Length(keys);;
gap> arr:= List([0 .. Int(1/4)-1], i->keys{ 4*i + [1 .. 41 });;
gap> if 1 mod 4 <> O then Add(arr, keys{[4*Int(1/4) + 1 .. 1]}); fi;
gap> Length(keys); PrintArray(arr);
35
[[Assert, Info, IsBound, QUIT 1,

[TryNextMethod, Unbind, and, atomic],

[break, continue, do, elif 1],

[else, end, false, fi],

[for, function, if, in],

[local, mod, not, od],

[or, quit, readonly, readwrite],

[rec, repeat, return, then],

[true, until, while] 1]

Note that (almost) all keywords are written in lowercase and that they are case sensitive. For
example else is a keyword; Else, eLsE, ELSE and so forth are ordinary identifiers. Keywords must
not contain whitespace, for example el if is not the same as elif.

Note: Several tokens from the list of keywords above may appear to be normal identifiers repre-
senting functions or literals of various kinds but are actually implemented as keywords for technical
reasons. The only consequence of this is that those identifiers cannot be re-assigned, and do not ac-
tually have function objects bound to them, which could be assigned to other variables or passed to
functions. These keywords are true, false, Assert (7.5.3), IsBound (4.8.1), Unbind (4.8.2), Info
(7.4.6) and TryNextMethod (78.5.1).

Keywords atomic, readonly, readwrite are not used at the moment. They are reserved for the
future version of GAP to prevent their accidental use as identifiers.

4.6 Identifiers

An identifier is used to refer to a variable (see 4.8). An identifier usually consists of letters, digits, un-
derscores _, and “at”-characters @, and must contain at least one non-digit. An identifier is terminated
by the first character not in this class. Note that the “at”-character @ is used to implement namespaces,
see Section 4.10 for details.

Examples of valid identifiers are

a foo alongIdentifier
hello Hello HELLO
x100 100x _100

some_people_prefer_underscores_to_separate_words
WePreferMixedCaseToSeparateWords
abc@def

GAP - Reterence Manual 52

Note that case is significant, so the three identifiers in the second line are distinguished.

The backslash \ can be used to include other characters in identifiers; a backslash followed by a
character is equivalent to the character, except that this escape sequence is considered to be an ordinary
letter. For example

G\ (2\,5\)

is an identifier, not a call to a function G.

An identifier that starts with a backslash is never a keyword, so for example * and \mod are
identifiers.

The length of identifiers is not limited, however only the first 1023 characters are significant. The
escape sequence \NEWLINE is ignored, making it possible to split long identifiers over multiple lines.

4.6.1 IsValidldentifier

> IsValidIdentifier(str) (function)

returns true if the string str would form a valid identifier consisting of letters, digits and under-
scores; otherwise it returns false. It does not check whether str contains characters escaped by a
backslash \.

Note that the “at”-character is used to implement namespaces for global variables in packages.
See 4.10 for details.

4.6.2 Conventions about Identifiers

(The following rule is stated also in Section (Tutorial: Variables versus Objects).)

The name of almost every global variable in the GAP library and in GAP packages starts with
a capital letter. (See Section 6.1 for the few exceptions.) For user variables, we recommend only
choosing names that start with a lower case letter, in order to avoid name clashes.

For example, valid GAP input which assigns some user variables whose names start with capital
letters may run into errors with a newer version of GAP or in a GAP session with more or newer
packages, because it may happen that these variables are predefined global variables in this situation.

4.7 Expressions

An expression is a construct that evaluates to a value. Syntactic constructs that are executed to produce
a side effect and return no value are called statements (see 4.15). Expressions appear as right hand
sides of assignments (see 4.15.1), as actual arguments in function calls (see 4.12), and in statements.

Note that an expression is not the same as a value. For example 1 + 11 is an expression, whose
value is the integer 12. The external representation of this integer is the character sequence 12, i.e.,
this sequence is output if the integer is printed. This sequence is another expression whose value is the
integer 12. The process of finding the value of an expression is done by the interpreter and is called
the evaluation of the expression.

The simplest cases of expressions are the following:

e variables (see Section 4.8),

* function literals (see Section 4.11),

GAP - Reterence Manual

e function calls (see Section 4.12),

* integer literals (see Chapter 14),

* floating point literals (see Chapter 19),
» permutation literals (see Chapter 42),
* string literals (see Chapter 27),

* character literals (see Chapter 27),

* list literals (see Chapter 21), and

* record literals (see Chapter 29).

53

Expressions, for example the simple expressions mentioned above, can be combined with the operators
to form more complex expressions. Of course those expressions can then be combined further with
the operators to form even more complex expressions. The operators fall into three classes. The
comparisons are =, <>, <, <=, > >=,and in (see 4.13 and 30.6). The arithmetic operators are +, -, *,

/,mod, and ~ (see 4.14). The logical operators are not, and, and or (see 20.4).

The following example shows a very simple expression with value 4 and a more complex expres-

sion.
Example

gap> 2 * 2;
4

true

gap> 2 * 2 + 9 = Fibonacci(7) and Fibonacci(13) in Primes;

The following table lists all operators by precedence, from highest to lowest, and also indicates
whether the operator is left associative (aka left-to-right) or right associative (aka right-to-left) or

neither.

operator

associativity

arithmetic (see 4.14)
unary +, unary -
*, /, mod
binary +, binary -

none

right-to-left
left-to-right
left-to-right

comparison (see 4.13)
= <>, <, <=,> >= and in

none

logical (see 20.4)
not
and
or

4.8 Variables

right-to-left
left-to-right
left-to-right

A variable is a location in a GAP program that points to a value. We say the variable is bound to this

value. If a variable is evaluated it evaluates to this value.

GAP - Reterence Manual 54

Initially an ordinary variable is not bound to any value. The variable can be bound to a value by
assigning this value to the variable (see 4.15.1). Because of this we sometimes say that a variable
that is not bound to any value has no assigned value. Assignment is in fact the only way by which a
variable, which is not an argument of a function, can be bound to a value. After a variable has been
bound to a value an assignment can also be used to bind the variable to another value.

A special class of variables is the class of arguments of functions. They behave similarly to other
variables, except they are bound to the value of the actual arguments upon a function call (see 4.12).

Each variable has a name that is also called its identifier. This is because in a given scope an
identifier identifies a unique variable (see 4.6). A scope is a lexical part of a program text. There
is the global scope that encloses the entire program text, and there are local scopes that range from
the function keyword, denoting the beginning of a function definition, to the corresponding end
keyword. A local scope introduces new variables, whose identifiers are given in the formal argument
list and the local declaration of the function (see 4.11). Usage of an identifier in a program text
refers to the variable in the innermost scope that has this identifier as its name. Because this mapping
from identifiers to variables is done when the program is read, not when it is executed, GAP is said to
have lexical scoping. The following example shows how one identifier refers to different variables at
different points in the program text.

g = 0; # global variable g
x := function (a, b, c)
local vy;
g = c; # c refers to argument c of function x

y := function (y)
local d, e, f;
d :=y; # y refers to argument y of function
e := b; # b refers to argument b of function x
f :=g; # g refers to global variable g

<

return d + e + f;
end;
return y(a); # y refers to local y of function x
end;

It is important to note that the concept of a variable in GAP is quite different from the concept of
a variable in most compiled programming languages.

In those languages a variable denotes a block of memory. The value of the variable is stored in this
block. So in those languages two variables can have the same value, but they can never have identical
values, because they denote different blocks of memory. Note that some languages have the concept of
a reference argument. It seems as if such an argument and the variable used in the actual function call
have the same value, since changing the argument’s value also changes the value of the variable used
in the actual function call. But this is not so; the reference argument is actually a pointer to the variable
used in the actual function call, and it is the compiler that inserts enough magic to make the pointer
invisible. In order for this to work the compiler needs enough information to compute the amount of
memory needed for each variable in a program, which is readily available in the declarations.

In GAP on the other hand each variable just points to a value, and different variables can share the
same value.

GAP - Reterence Manual 55

4.8.1 IsBound (for a global variable)

> IsBound(ident) (function)

IsBound returns true if the variable ident points to a value, and false otherwise.
For records and lists IsBound can be used to check whether components or entries, respectively,
are bound (see Chapters 29 and 21).

4.8.2 Unbind (unbind a variable)

> Unbind(ident) (function)

deletes the identifier ident. If there is no other variable pointing to the same value as ident was,
this value will be removed by the next garbage collection. Therefore Unbind can be used to get rid of
unwanted large objects.

For records and lists Unbind can be used to delete components or entries, respectively (see Chap-
ters 29 and 21).

4.9 More About Global Variables

The vast majority of variables in GAP are defined at the outer level (the global scope). They are used
to access functions and other objects created either in the GAP library or packages or in the user’s
code.

Note that for packages there is a mechanism to implement package local namespaces on top of
this global namespace. See Section 4.10 for details.

Certain special facilities are provided for manipulating global variables which are not available for
other types of variable (such as local variables or function arguments).

First, such variables may be marked read-only using MakeReadOnlyGlobal (4.9.2). In which
case attempts to change them will fail. Most of the global variables defined in the GAP library are
so marked. read-only variables can be made read-write again by calling MakeReadWriteGlobal
(4.9.3). GAP also features constant variables, which are created by calling MakeConstantGlobal
(4.9.4). Constant variables can never be changed. In some cases, GAP can optimise code which
uses constant variables, as their value never changes. In this version GAP these optimisations can be
observed by printing the function back out, but this behaviour may change in future.

Example

gap> globali := 1 + 2;;

gap> globalb := true;;

gap> MakeConstantGlobal("globali");
gap> MakeConstantGlobal("globalb");
gap> f := function()

> if globalb then

> return globali + 1;
> else

> return globali + 2;
> fi;

> end;;

gap> Print(f);
function ()

GAP - Reterence Manual 56

return 3 + 1;
end

Second, a group of functions are supplied for accessing and altering the values assigned to global
variables. Use of these functions differs from the use of assignment, Unbind (4.8.2) and IsBound
(4.8.1) statements, in two ways. First, these functions always affect global variables, even if local
variables of the same names exist. Second, the variable names are passed as strings, rather than being
written directly into the statements.

Note that the functions NamesGVars (4.9.9), NamesSystemGVars (4.9.10), and NamesUserGVars
(4.9.11), deal with the global namespace.

4.9.1 IsReadOnlyGlobal

> IsReadOnlyGlobal (name) (function)

returns true if the global variable named by the string name is read-only and false otherwise
(the default).

4.9.2 MakeReadOnlyGlobal

> MakeReadOnlyGlobal (name) (function)

marks the global variable named by the string name as read-only.
A warning is given if name has no value bound to it or if it is already read-only.

4.9.3 MakeReadWriteGlobal

> MakeReadWriteGlobal (name) (function)

marks the global variable named by the string name as read-write.
A warning is given if name is already read-write.

Example
gap> xx := 17;
17
gap> IsReadOnlyGlobal("xx");
false
gap> xx := 15;
15

gap> MakeReadOnlyGlobal ("xx");

gap> xx := 16;

Variable: ’xx’ is read only

not in any function

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ after making it writable to continue
brk> quit;

gap> IsReadOnlyGlobal("xx");

true

gap> MakeReadWriteGlobal ("xx");

GAP - Reterence Manual 57

gap> xx := 16;

16

gap> IsReadOnlyGlobal("xx");
false

4.9.4 MakeConstantGlobal
> MakeConstantGlobal (name) (function)
MakeConstantGlobal (name) marks the global variable named by the string name as constant. A

constant variable can never be reassigned or made read-write again.
A warning is given if name is already constant.

4.9.5 ValueGlobal

> ValueGlobal (name) (function)

returns the value currently bound to the global variable named by the string name. An error is
raised if no value is currently bound.

4.9.6 IsBoundGlobal

> IsBoundGlobal (name) (function)

returns true if a value currently bound to the global variable named by the string name and false
otherwise.

4.9.7 UnbindGlobal

> UnbindGlobal (name) (function)

removes any value currently bound to the global variable named by the string name. Nothing is
returned.

A warning is given if name was not bound. The global variable named by name must be writable,
otherwise an error is raised.

4.9.8 BindGlobal

> BindGlobal (name, val) (function)
> BindConstant (name, val) (function)

BindGlobal and BindConstant set the global variable named by the string name to the value
val, provided that variable is writable. BindGlobal makes the resulting variable read-only, while
BindConstant makes it constant. If name already had a value, a warning message is printed.

This is intended to be the normal way to create and set “official” global variables (such as opera-
tions, filters and constants).

Caution should be exercised in using these functions, especially UnbindGlobal (4.9.7) as unex-
pected changes in global variables can be very confusing for the user.

GAP - Reterence Manual 58

Example
gap> xx := 16;
16
gap> IsReadOnlyGlobal("xx");
false
gap> ValueGlobal("xx");
16
gap> IsBoundGlobal("xx");
true

gap> BindGlobal ("xx",17);

#W BIND_GLOBAL: variable ‘xx’ already has a value
gap> xx;

17

gap> IsReadOnlyGlobal("xx");

true

gap> MakeReadWriteGlobal("xx");

gap> Unbind(xx) ;

4.9.9 NamesGVars

> NamesGVars() (function)

This function returns an immutable (see 12.6) sorted (see 21.19) list of all the global variable
names known to the system. This includes names of variables which were bound but have now been
unbound and some other names which have never been bound but have become known to the system
by various routes.

4.9.10 NamesSystemGVars

> NamesSystemGVars () (function)

This function returns an immutable sorted list of all the global variable names created by the GAP
library when GAP was started.

4.9.11 NamesUserGVars

> NamesUserGVars () (function)

This function returns an immutable sorted list of the global variable names created since the library
was read, to which a value is currently bound.

4.10 Namespaces for GAP packages

As mentioned in Section 4.9 above all global variables share a common namespace. This can relatively
easily lead to name clashes, in particular when many GAP packages are loaded at the same time. To
give package code a way to have a package local namespace without breaking backward compatibility
of the GAP language, the following simple rule has been devised:

GAP - Reterence Manual 59

If in package code a global variable that ends with an “at”-character @ is accessed in any way,
the name of the package is appended before accessing it. Here, “package code” refers to everything
which is read with ReadPackage (76.3.1). As the name of the package the entry PackageName in its
PackageInfo.g file is taken. As for all identifiers, this name is case sensitive.

For example, if the following is done in the code of a package with name xYz:
Example

gap> a@ := 12;

Then actually the global variable a@xYz is assigned. Further accesses to a@ within the package code
will all be redirected to a@xYz. This includes all the functions described in Section 4.9 and indeed all
the functions described Section 79.10 like for example DeclareCategory (13.3.5). Note that from
code in the same package it is still possible to access the same global variable via a@xYz explicitly.

All other code outside the package as well as interactive user input that wants to refer to that
variable a@xYz must do so explicitly by using a@xYz.

Since in earlier releases of GAP the “at”-character @ was not a legal character (without using
backslashes), this small extension of the language does not break any old code.

4.11 Function

function([arg-ident {, arg-ident}])
[local loc-ident {, loc-ident} ; 1]
statements
end
A function literal can be assigned to a variable or to a list element or a record component. Later
this function can be called as described in 4.12.
The following is an example of a function definition. It is a function to compute values of the
Fibonacci sequence (see Fibonacci (16.3.1)).

Example

gap> fib := function (n)

> local f1, f2, £3, i;
> f1 :=1; £2 := 1;
> for i in [3..n] do
> £f3 := f1 + £2;

> f1 := £2;

> f2 := £3;

> od;

> return f2;

> end;;

g

[

ap> List([1..10], fib);
1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Because for each of the formal arguments arg-ident and for each of the formal locals
loc-ident a new variable is allocated when the function is called (see 4.12), it is possible that a
function calls itself. This is usually called recursion. The following is a recursive function that com-
putes values of the Fibonacci sequence.

GAP - Reterence Manual 60

Example

gap> fib := function (n)
if n < 3 then
return 1;
else
return fib(n-1) + fib(n-2);
fi;
end;;
ap> List([1..10], fib);
i, 1, 2, 3, 5, 8, 13, 21, 34, 55]

—0Q V V V V V V

Note that the recursive version needs 2 * fib(n)-1 steps to compute £ib(n), while the iterative
version of £ib needs only n-2 steps. Both are not optimal however, the library function Fibonacci
(16.3.1) only needs about Log(n) steps.

As noted in Section 4.12, the case where a function’s last argument is followed by . . . is special.
It provides a way of defining a function with a variable number of arguments. The values of the actual
arguments are computed and the first ones are assigned to the new variables corresponding to the
formal arguments before the last argument, if any. The values of all the remaining actual arguments are
stored in a list and this list is assigned to the new variable corresponding to the final formal argument.
There are two typical scenarios for wanting such a possibility: having optional arguments and having
any number of arguments.

The following example shows one way that the function Position (21.16.1) might be encoded
and demonstrates the “optional argument” scenario.

Example
gap> position := function (list, obj, arg...)
> local pos;
> if 0 = Length(arg) then
> pos := 0;
> else
> pos := argl1];
> fi;
> repeat
> pos := pos + 1;
> if pos > Length(list) then
> return fail,;
> fi;
> until list[pos] = obj;
> return pos;
> end;
function(list, obj, arg...) ... end
gap> position([1, 4, 2], 4);

2

gap> position([1, 4, 2], 3);
fail

gap> position([1, 4, 2], 4, 2);
fail

The following example demonstrates the “any number of arguments” scenario.
Example

gap> sum := function (1...)
> local total, x;

GAP - Reterence Manual 61

> total := 0;

> for x in 1 do

> total := total + x;
> od;

> return total;

> end;

function(1...) ... end
gap> sum(1, 2, 3);

6

gap> sum(1, 2, 3, 4);

10

gap> sum() ;

0

The user should compare the above with the GAP function Sum (21.20.26) which, for example,
may take a list argument and optionally an initial element (which zero should the sum of an empty list
return?).

GAP will also special case a function with a single argument with the name arg as function with
a variable length list of arguments, as if the user had written arg. . ..

Note that if a function f is defined as above then NumberArgumentsFunction(f) returns minus
the number of formal arguments (including the final argument) (see NumberArgumentsFunction
(5.1.2)).

Using the ... notation on a function £ with only a single named argument tells GAP that when
it encounters f that it should form a list out of the arguments of f. What if one wishes to do the
“opposite”: tell GAP that a list should be “unwrapped” and passed as several arguments to a function.
The function CallFuncList (5.2.1) is provided for this purpose.

Also see Chapter 5.

{ arg-list } -> expr

This is a shorthand for

function (arg-list) return expr; end.

arg-list is a (possibly empty) argument list. Any arguments list which would be valid for a
normal GAP function is also valid here (including variadic arguments).

The following gives a couple of examples of a typical use of such a function
Example
gap> Sum(List([1..100], {x} -> x"2));
338350
gap> list := [3, 5, 2, 1, 3];;
gap> Sort(list, {x,y} -> x > y);
gap> list;

[5,3,3,2,1]
gap> £ := {x,y...} -> y;;
gap> £(1,2,3,4);

(2,3, 4]
gap> £ := {} -> 2;
function() ... end

gap> Print(f);
function ()

return 2;
end

GAP - Reterence Manual 62

gap> £O;
2

The { and } may be omitted for functions with one argument:

Example
gap> Sum(List([1..100], {x} -> x°2));
338350
gap> Sum(List([1..100], x -> x°2));
338350

When the definition of a function fun1 is evaluated inside another function fun2, GAP binds all
the identifiers inside the function fun1 that are identifiers of an argument or a local of fun2 to the
corresponding variable. This set of bindings is called the environment of the function funl1. When
funi is called, its body is executed in this environment. The following implementation of a simple
stack uses this. Values can be pushed onto the stack and then later be popped off again. The interesting
thing here is that the functions push and pop in the record returned by Stack access the local variable
stack of Stack. When Stack is called, a new variable for the identifier stack is created. When
the function definitions of push and pop are then evaluated (as part of the return statement) each
reference to stack is bound to this new variable. Note also that the two stacks A and B do not interfere,
because each call of Stack creates a new variable for stack.

Example
gap> Stack := function()
> local stack;
> stack := [];
> return rec(
> push := function(value)
> Add(stack, value);
> end,
> pop := function()
> return Remove(stack) ;
> end
>)3
> end;;
gap> A := StackQ;;
gap> B := Stack();;
gap> A.push(1); A.push(2); A.push(3);
gap> B.push(4); B.push(5); B.push(6);
gap> A.pop(); A.pop(); A.pop();
3
2
1
gap> B.pop(); B.pop(); B.pop(O);
6
5
4

This feature should be used rarely, since its implementation in GAP is not very efficient.

GAP - Reterence Manual 63

4.12 Function Calls

4.12.1 Function Call With Arguments

function-var ([arg-expr[, arg-expr, ...1]1)

The function call has the effect of calling the function function-var. The precise semantics are
as follows.

First GAP evaluates the function-var. Usually function-var is a variable, and GAP does
nothing more than taking the value of this variable. It is allowed though that function-var
is a more complex expression, such as a reference to an element of a list (see Chapter 21)
list-var [int-expr], or to a component of a record (see Chapter 29) record-var .ident. In
any case GAP tests whether the value is a function. If it is not, GAP signals an error.

Next GAP checks that the number of actual arguments arg-exprs agrees with the number of
formal arguments as given in the function definition. If they do not agree GAP signals an error. An
exception is the case when the function has a variable length argument list, which is denoted by adding

. after the final argument. In this case there must be at least as many actual arguments as there are
formal arguments before the final argument and can be any larger number (see 4.11 for examples).

Now GAP allocates for each formal argument and for each formal local (that is, the identifiers in
the 1local declaration) a new variable. Remember that a variable is a location in a GAP program that
points to a value. Thus for each formal argument and for each formal local such a location is allocated.

Next the arguments arg-exprs are evaluated from left to right, and the values are assigned to the
newly created variables corresponding to the formal arguments. Of course the first value is assigned
to the new variable corresponding to the first formal argument, the second value is assigned to the
new variable corresponding to the second formal argument, and so on. An exception again occurs if
the last formal argument has the name arg. In this case the values of all the actual arguments not
assigned to the other formal parameters are stored in a list and this list is assigned to the new variable
corresponding to the formal argument arg.

The new variables corresponding to the formal locals are initially not bound to any value. So
trying to evaluate those variables before something has been assigned to them will signal an error.

Now the body of the function, which is a statement, is executed. If the identifier of one of the
formal arguments or formal locals appears in the body of the function it refers to the new variable that
was allocated for this formal argument or formal local, and evaluates to the value of this variable.

If during the execution of the body of the function a return statement with an expression (see
4.15.9) is executed, execution of the body is terminated and the value of the function call is the value
of the expression of the return. If during the execution of the body a return statement without an
expression is executed, execution of the body is terminated and the function call does not produce
a value, in which case we call this call a procedure call (see 4.15.2). If the execution of the body
completes without execution of a return statement, the function call again produces no value, and

again we talk about a procedure call.
Example

gap> Fibonacci(11);
89

The above example shows a call to the function Fibonacci (16.3.1) with actual argument 11, the
following one shows a call to the operation RightCosets (39.7.2) where the second actual argument
is another function call.

Example
gap> RightCosets(G, Intersection(U, V));;

GAP - Reterence Manual 64

4.12.2 Function Call With Options

function-var (arg-expr[, arg-expr, ...]1[: [option-expr [,option-expr,
o111

As well as passing arguments to a function, providing the mathematical input to its calculation,
it is sometimes useful to supply “hints” suggesting to GAP how the desired result may be computed
more quickly, or specifying a level of tolerance for random errors in a Monte Carlo algorithm.

Such hints may be supplied to a function-call and to all subsidiary functions called from that call
using the options mechanism. Options are separated from the actual arguments by a colon : and have
much the same syntax as the components of a record expression. The one exception to this is that a
component name may appear without a value, in which case the value true is silently inserted.

Options are evaluated from left to right, but only after all arguments have been evaluated.

The following example shows a call to Size (30.4.6) passing the options hard (with the value
true) and tcselection (with the string "external" as value).

Example
gap> Size(fpgrp : hard, tcselection := "external");

Options supplied with function calls in this way are passed down using the global options stack
described in chapter 8, so that the call above is exactly equivalent to
Example
gap> PushOptions(rec(hard := true, tcselection := "external"));
gap> Size(fpgrp);
gap> PopOptions();

Note that any option may be passed with any function, whether or not it has any actual meaning
for that function, or any function called by it. The system provides no safeguard against misspelled
option names.

4.13 Comparisons

left-expr = right-expr

left-expr <> right-expr

The operator = tests for equality of its two operands and evaluates to true if they are equal and
to false otherwise. Likewise <> tests for inequality of its two operands. For each type of objects
the definition of equality is given in the respective chapter. Objects in different families (see 13.1) are
never equal, i.e., = evaluates in this case to false, and <> evaluates to true.

left-expr < right-expr

left-expr > right-expr
right-expr

left-expr >= right-expr

< denotes less than, <= less than or equal, > greater than, and >= greater than or equal of its two
operands. For each kind of objects the definition of the ordering is given in the respective chapter.

Note that < implements a total ordering of objects (which can be used for example to sort a list
of elements). Therefore in general < will not be compatible with any inclusion relation (which can be
tested using IsSubset (30.5.1)). (For example, it is possible to compare permutation groups with <
in a total ordering of all permutation groups, but this ordering is not compatible with the relation of
being a subgroup.)

A
1]

left-expr

GAP - Reterence Manual 65

Only for the following kinds of objects, an ordering via < of objects in different families (see 13.1)
is supported. Rationals (see IsRat (17.2.1)) are smallest, next are cyclotomics (see IsCyclotomic
(18.1.3)), followed by finite field elements (see ISFFE (59.1.1)); finite field elements in different
characteristics are compared via their characteristics, next are permutations (see IsPerm (42.1.1)),
followed by the boolean values true, false, and fail (see IsBool (20.1.1)), characters (such as
{}a{’}’, see IsChar (27.1.1)), and lists (see IsList (21.1.1)) are largest; note that two lists can be
compared with < if and only if their elements are again objects that can be compared with <.

For other objects, GAP does not provide an ordering via <. The reason for this is that a total
ordering of all GAP objects would be hard to maintain when new kinds of objects are introduced, and
such a total ordering is hardly used in its full generality.

However, for objects in the filters listed above, the ordering via < has turned out to be useful. For
example, one can form sorted lists containing integers and nested lists of integers, and then search in
them using PositionSorted (see 21.16).

Of course it would in principle be possible to define an ordering via < also for certain other objects,
by installing appropriate methods for the operation \<. But this may lead to problems at least as soon
as one loads GAP code in which the same is done, under the assumption that one is completely free to
define an ordering via < for other objects than the ones for which the “official” GAP provides already
an ordering via <.

Comparison operators, including the operator in (see 21.8), are not associative, Hence it is not
allowed towritea = b <> ¢ = d,youmustuse (a = b) <> (¢ = d) instead. The comparison
operators have higher precedence than the logical operators (see 20.4), but lower precedence than the
arithmetic operators (see 4.14). Thus, for instance, a * b = ¢ and d is interpreted as ((a * b)
= ¢) and d).

The following example shows a comparison where the left operand is an expression.

Example
gap> 2 * 2 + 9 = Fibonacci(7);
true

For the underlying operations of the operators introduced above, see 31.11.

4.14 Arithmetic Operators

+ right-expr

- right-expr

left-expr + right-expr

left-expr - right-expr

left-expr * right-expr

left-expr / right-expr

left-expr mod right-expr

left-expr ~ right-expr

The arithmetic operators are +, -, *, /, mod, and ~. The meanings (semantics) of those operators
generally depend on the types of the operands involved, and they are defined in the various chapters
describing the types. However basically the meanings are as follows.

a + b denotes the addition of additive elements a and b.

a - b denotes the addition of a and the additive inverse of b.

a * b denotes the multiplication of multiplicative elements a and b.

~

GAP - Reterence Manual 66

a / b denotes the multiplication of a with the multiplicative inverse of b.

a mod b, for integer or rational left operand a and for non-zero integer right operand b, is defined
as follows. If a and b are both integers, a mod b is the integer r in the integer range O .. |b|
- 1 satisfying a = r + bgq, for some integer g (where the operations occurring have their usual
meaning over the integers, of course).

If a is a rational number and b is a non-zero integer, and a = m / n where m and n are coprime
integers with n positive, then a mod b is the integer r in the integer range 0 .. |b| - 1 such that
m is congruent to rn modulo b, and r is called the “modular remainder” of a modulo b. Also, 1 /
n mod b is called the “modular inverse” of n modulo b. (A pair of integers is said to be coprime (or
relatively prime) if their greatest common divisor is 1.)

With the above definition, 4 / 6 mod 32equals2 / 3 mod 32 and hence exists (and is equal to
22), despite the fact that 6 has no inverse modulo 32.

Note: For rational a, a mod b could have been defined to be the non-negative rational c less
than | b | such that a - c¢ is a multiple of b. However this definition is seldom useful and not the one
chosen for GAP.

+ and - can also be used as unary operations. The unary + is ignored. The unary - returns the
additive inverse of its operand; over the integers it is equivalent to multiplication by -1.

~ denotes powering of a multiplicative element if the right operand is an integer, and is also used
to denote the action of a group element on a point of a set if the right operand is a group element. In
the special case that both operands are group elements, ~ denotes conjugation, that is, g~h = h~' gh.

The precedence of those operators is as follows. The powering operator ~ has the highest prece-
dence, followed by the unary operators + and -, which are followed by the multiplicative operators
*, /, and mod, and the additive binary operators + and - have the lowest precedence. That means
that the expression -2 ~ -2 * 3 + 1 is interpreted as (-(2 ~ (-2)) * 3) + 1. If in doubt use
parentheses to clarify your intention.

The associativity of the arithmetic operators is as follows. ~ is not associative, i.e., it is invalid to
write 2~3~4, use parentheses to clarify whether you mean (2~3)~4 or 2~ (3~4). The unary operators
+ and - are right associative, because they are written to the left of their operands. *, /, mod, +, and
- are all left associative, i.e., 1-2-3 is interpreted as (1-2) -3 not as 1-(2-3). Again, if in doubt use
parentheses to clarify your intentions.

The arithmetic operators have higher precedence than the comparison operators (see 4.13 and 30.6)
and the logical operators (see 20.4). Thus, forexample,a * b = ¢ and d isinterpreted, ((a * b)
= ¢) and d.

Example
gap> 2 * 2 + 9; # a very simple arithmetic expression
13

For other arithmetic operations, and for the underlying operations of the operators introduced
above, see 31.12.

4.15 Statements
GAP programs consist of a sequence of so-called statements. The following types of statements exist:
* Assignments (see Section 4.15.1),

* Procedure calls (see Section 4.15.2),

GAP - Reterence Manual 67

e if statements (see Section 4.15.3),

* while loops (see Section 4.15.4),

* repeat loops (see Section 4.15.5),

* for loops (see Section 4.15.6),

* break statements (see Section 4.15.7),

e continue statements (see Section 4.15.8), and
* return statements (see Section 4.15.9).

They can be entered interactively or be part of a function definition. Every statement must be termi-
nated by a semicolon.

Statements, unlike expressions, have no value. They are executed only to produce an effect. For
example an assignment has the effect of assigning a value to a variable, a for loop has the effect of
executing a statement sequence for all elements in a list and so on. We will talk about evaluation of
expressions but about execution of statements to emphasize this difference.

Using expressions as statements is treated as syntax error.

Example
gap> i :=7;;
gap> if i <> 0 then k = 16/i; fi;
Syntax error: := expected

if i <> 0 then k = 16/i; fi;

gap>

As you can see from the example this warning does in particular address those users who are used
to languages where = instead of := denotes assignment.

Empty statements are permitted and have no effect.

A sequence of one or more statements is a statement sequence, and may occur everywhere instead
of a single statement. Each construct is terminated by a keyword. The simplest statement sequence
is a single semicolon, which can be used as an empty statement sequence. In fact an empty statement
sequence as in for i in [1 .. 2] do od is also permitted and is silently translated into the
sequence containing just a semicolon.

4.15.1 Assignments

var := expr;

The assignment has the effect of assigning the value of the expressions expr to the variable var.

The variable var may be an ordinary variable (see 4.8), a list element selection
list-var [int-expr] (see 21.4) or a record component selection record-var . ident (see 29.3).
Since a list element or a record component may itself be a list or a record the left hand side of an
assignment may be arbitrarily complex.

Note that variables do not have a type. Thus any value may be assigned to any variable. For
example a variable with an integer value may be assigned a permutation or a list or anything else.

GAP - Reterence Manual 68

Example
gap> data:= rec(numbers:= [1, 2, 3]);
rec(numbers := [1, 2, 3])

gap> data.string:= "string";; data;

rec(numbers := [1, 2, 3], string := "string")
gap> data.numbers[2]:= 4;; data;

rec(numbers := [1, 4, 3], string := "string")

If the expression expr is a function call then this function must return a value. If the function
does not return a value an error is signalled and you enter a break loop (see 6.4). As usual you can
leave the break loop with quit;. If you enter return return-expr; the value of the expression
return-expr is assigned to the variable, and execution continues after the assignment.

Example
gap> fl:= function(x) Print("value: ", x, "\n"); end;;
gap> f2:= function(x) return f1(x); end;;
gap> £2(4);
value: 4

Function Calls: <func> must return a value at
return f1(x);
called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can supply one by ’return <value>;’ to continue
brk> return "hello";
"hello"

In the above example, the function £2 calls £1 with argument 4, and since £1 does not return a
value (but only prints a line “value: ...”), the return statement of £2 cannot be executed. The
error message says that it is possible to return an appropriate value, and the returned string "hello"
is used by £2 instead of the missing return value of 1.

4.15.2 Procedure Calls

procedure-var ([arg-expr [,arg-expr, ...11);

The procedure call has the effect of calling the procedure procedure-var. A procedure call is
done exactly like a function call (see 4.12). The distinction between functions and procedures is only
for the sake of the discussion, GAP does not distinguish between them. So we state the following
conventions.

A function does return a value but does not produce a side effect. As a convention the name
of a function is a noun, denoting what the function returns, e.g., "Length", "Concatenation" and
"Order".

A procedure is a function that does not return a value but produces some effect. Procedures are
called only for this effect. As a convention the name of a procedure is a verb, denoting what the
procedure does, e.g., "Print", "Append" and "Sort".
Example
gap> Read("myfile.g"); # a call to the procedure Read
gap> 1 := [1, 2 1;;
gap> Append(1, [3,4,5]); # a call to the procedure Append

GAP - Reterence Manual 69

There are a few exceptions of GAP functions that do both return a value and produce some effect.
An example is Sortex (21.18.3) which sorts a list and returns the corresponding permutation of the
entries.

4153 If

if bool-exprl then statementsl { elif bool-expr2 then statements2 }[else
statements3] fi;

The if statement allows one to execute statements depending on the value of some boolean ex-
pression. The execution is done as follows.

First the expression bool-exprl following the if is evaluated. If it evaluates to true the state-
ment sequence statements1 after the first then is executed, and the execution of the if statement is
complete.

Otherwise the expressions bool-expr2 following the elif are evaluated in turn. There may
be any number of elif parts, possibly none at all. As soon as an expression evaluates to true the
corresponding statement sequence statements2 is executed and execution of the if statement is
complete.

If the if expression and all, if any, elif expressions evaluate to false and there is an else
part, which is optional, its statement sequence statements3 is executed and the execution of the if
statement is complete. If there is no else part the if statement is complete without executing any
statement sequence.

Since the if statement is terminated by the fi keyword there is no question where an else part
belongs, i.e., GAP has no “dangling else”. In

if exprl then if expr2 then statsl else stats2 fi; fi;

the else part belongs to the second if statement, whereas in

if exprl then if expr2 then statsl fi; else stats2 fi;

the else part belongs to the first if statement.
Since an if statement is not an expression it is not possible to write

abs := if x > O then x; else -x; fi;

which would, even if legal syntax, be meaningless, since the if statement does not produce a value
that could be assigned to abs.

If one of the expressions bool-exprl, bool-expr2 is evaluated and its value is neither true nor
false an error is signalled and a break loop (see 6.4) is entered. As usual you can leave the break loop
with quit;. If you enter return true;, execution of the if statement continues as if the expression
whose evaluation failed had evaluated to true. Likewise, if you enter return false;, execution of
the if statement continues as if the expression whose evaluation failed had evaluated to false.

Example
gap> i := 10;;
gap> if 0 < i then
> s :=1;

> elif i < O then

GAP - Reterence Manual 70

> s := -1;

> else

> s := 0;

> fi;

gap> s; # the sign of i
1

4.15.4 While

while bool-expr do statements od;

The while loop executes the statement sequence statements while the condition bool-expr
evaluates to true.

First bool-expr is evaluated. If it evaluates to false execution of the while loop terminates
and the statement immediately following the while loop is executed next. Otherwise if it evaluates to
true the statements are executed and the whole process begins again.

The difference between the while loop and the repeat until loop (see 4.15.5) is that the
statements in the repeat until loop are executed at least once, while the statements in the
while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see 6.4)
is entered. As usual you can leave the break loop with quit;. If you enter return false;, execution
continues with the next statement immediately following the while loop. If you enter return true;,
execution continues at statements, after which the next evaluation of bool-expr may cause another
error.

The following example shows a while loop that sums up the squares 12,2%,... until the sum
exceeds 200.

Example

gap> i := 0;; s := 0;;

gap> while s <= 200 do

> i:=1i+1; s :=8 + i~2;
> od;

gap> s;

204

A while loop may be left prematurely using break, see 4.15.7.

4.15.5 Repeat

repeat statements until bool-expr;

The repeat loop executes the statement sequence statements until the condition bool-expr
evaluates to true.

First statements are executed. Then bool-expr is evaluated. If it evaluates to true the repeat
loop terminates and the statement immediately following the repeat loop is executed next. Otherwise
if it evaluates to false the whole process begins again with the execution of the statements.

The difference between the while loop (see 4.15.4) and the repeat until loop is that the
statements in the repeat until loop are executed at least once, while the statements in the
while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see
6.4) is entered. As usual you can leave the break loop with quit;. If you enter return true;,

GAP - Reterence Manual 71

execution continues with the next statement immediately following the repeat loop. If you enter
return false;, execution continues at statements, after which the next evaluation of bool-expr
may cause another error.

The repeat loop in the following example has the same purpose as the while loop in the preced-
ing example, namely to sum up the squares 12,22, ... until the sum exceeds 200.

Example
gap> i := 0;; s := 0;;
gap> repeat

> i=1i+1; s :=8+ i~2;
> until s > 200;

gap> s;

204

A repeat loop may be left prematurely using break, see 4.15.7.

4.15.6 For

for simple-var in list-expr do statements od;

The for loop executes the statement sequence statements for every element of the list
list-expr.

The statement sequence statements is first executed with simple-var bound to the first element
of the list 1ist-expr, then with simple-var bound to the second element of 1ist-expr and so on.
simple-var must be a simple variable, it must not be a list element selection 1ist-var [int-expr]
or a record component selection record-var . ident.

The execution of the for loop over a list is exactly equivalent to the following while loop.

loop_list := list;

loop_index := 1;

while loop_index <= Length(loop_list) do
variable := loop_list[loop_index];
statements
loop_index := loop_index + 1;

od;

with the exception that “loop_list” and “loop_index” are different variables for each for loop, i.e.,
these variables of different for loops do not interfere with each other.

The list 1ist-expr is very often a range (see 21.22).

for variable in [from..to] do statements od;

corresponds to the more common

for variable from from to to do statements od;

in other programming languages.

Example
gap> s := 0;;

gap> for i in [1..100] do

> s :=s + 1i;

> od;

gap> s;

5050

GAP - Reterence Manual 72

Note in the following example how the modification of the /ist in the loop body causes the loop
body also to be executed for the new values.

Example

gap> 1 := [1, 2, 3, 4, 5, 6 1;;

gap> for i in 1 do

> Print(i, " ");

> if i mod 2 = 0 then Add(1, 3 * i / 2); fi;
> od; Print("\n");

123456360909

gap> 1;

[1, 2, 3, 4, 5, 6, 3, 6, 9, 91

Note in the following example that the modification of the variable that holds the list has no
influence on the loop.

Example
gap> 1 := [1, 2, 3, 4, 5, 6 1;;
gap> for i in 1 do
> Print(i, " ");
> 1 :=[1;
> od; Print("\n");
123456
gap> 1;
L]

for variable in iterator do statements od;

It is also possible to have a for-loop run over an iterator (see 30.8). In this case the for-loop is
equivalent to

while not IsDonelterator(iterator) do
variable := NextIterator(iterator)
statements

od;

for variable in object do statements od;

Finally, if an object object which is not a list or an iterator appears in a for-loop, then GAP will
attempt to evaluate the function call Iterator(object). If this is successful then the loop is taken
to run over the iterator returned.

Example
gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));
Group([(1,2,3,4,5), (1,2)(3,4)(5,6) 1)

gap> count := 0;; sumord := 0;;

gap> for x in g do

> count := count + 1; sumord := sumord + Order(x); od;
gap> count;

120

gap> sumord;
471

GAP - Reterence Manual 73

The effect of

for variable in domain do

should thus normally be the same as

for variable in AsList(domain) do

but may use much less storage, as the iterator may be more compact than a list of all the elements.

See 30.8 for details about iterators.

A for loop may be left prematurely using break, see 4.15.7. This combines especially well with
a loop over an iterator, as a way of searching through a domain for an element with some useful
property.

4.15.7 Break

break;

The statement break; causes an immediate exit from the innermost loop enclosing it.
Example
gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));
Group([(1,2,3,4,5), (1,2)(3,4)(5,6) 1)

gap> for x in g do

> if Order (x) 3 then

> break;

> fi; od;

gap> x;

(1,5,2)(3,4,6)

It is an error to use this statement other than inside a loop.
Example

gap> break;
Syntax error: ’break’ statement not enclosed in a loop

4.15.8 Continue

continue;

The statement continue; causes the rest of the current iteration of the innermost loop enclosing
it to be skipped.

Example

gap> g := Group((1,2,3),(1,2));
Group([(1,2,3), (1,2) 1)

gap> for x in g do

> if Order(x) = 3 then

> continue;

> fi; Print(x,"\n"); od;

O

(2,3)

(1,3)

(1,2)

It is an error to use this statement other than inside a loop.
Example

gap> continue;
Syntax error: ’continue’ statement not enclosed in a loop

GAP - Reterence Manual 74

4.15.9 Return (With or without Value)

return;

In this form return terminates the call of the innermost function that is currently executing, and
control returns to the calling function. An error is signalled if no function is currently executing. No
value is returned by the function.

return expr;

In this form return terminates the call of the innermost function that is currently executing, and
returns the value of the expression expr. Control returns to the calling function. An error is signalled
if no function is currently executing.

Both statements can also be used in break loops (see 6.4). return; has the effect that the com-
putation continues where it was interrupted by an error or the user hitting CTRL-C. return expr;
can be used to continue execution after an error. What happens with the value expr depends on the
particular error.

For examples of return statements, see the functions £ib and Stack in Section 4.11.

4.16 Syntax Trees

This section describes the tools available to handle GAP syntax trees.

4.16.1 SyntaxTree

> SyntaxTree(f) (function)

Takes a GAP function f and returns its syntax tree.

Chapter 5

Functions

The section 4.11 describes how to define a function. In this chapter we describe functions that give in-
formation about functions, and various utility functions used either when defining functions or calling
functions.

5.1 Information about a function

5.1.1 NameFunction

> NameFunction(func) (attribute)

returns the name of a function. For operations, this is the name used in their declaration. For
functions, this is the variable name they were first assigned to. (For some internal functions, this
might be a name different from the name that is documented.) If no such name exists, the string
"unknown" is returned.
Example

gap> NameFunction(SylowSubgroup) ;
"SylowSubgroup"

gap> Blubberflutsch:=x->x;;

gap> HasNameFunction(Blubberflutsch);
true

gap> NameFunction(Blubberflutsch);
"Blubberflutsch"

gap> a:=Blubberflutsch;;

gap> NameFunction(a);
"Blubberflutsch"

gap> SetNameFunction(a, "f");

gap> NameFunction(a);

llfll

gap> HasNameFunction(x->x);

false

gap> NameFunction(x->x) ;

"unknown"

75

GAP - Reterence Manual 76

5.1.2 NumberArgumentsFunction
> NumberArgumentsFunction(func) (operation)
returns the number of arguments the function func accepts. -1 is returned for all operations. For

functions that use . . . or arg to take a variable number of arguments, the number returned is -1 times
the total number of parameters. For attributes, 1 is returned.

Example
gap> NumberArgumentsFunction(function(a,b,c,d,e,f,g,h,i,j,k)return 1;end);
11
gap> NumberArgumentsFunction(Size);
1
gap> NumberArgumentsFunction(IsCollsCollsElms) ;
3
gap> NumberArgumentsFunction(Sum) ;
-1
gap> NumberArgumentsFunction(function(a, x...) return 1; end);
-2

5.1.3 NamesLocalVariablesFunction

> NamesLocalVariablesFunction(func) (operation)

returns a mutable list of strings; the first entries are the names of the arguments of the function
func, in the same order as they were entered in the definition of func, and the remaining ones are the
local variables as given in the local statement in func. (The number of arguments can be computed
with NumberArgumentsFunction (5.1.2).)
Example
gap> NamesLocalVariablesFunction(function(a, b) local c; return 1; end);
["a", "b", "c"]
gap> NamesLocalVariablesFunction(function(arg) local a; return 1; end);
["arg", "a"]
gap> NamesLocalVariablesFunction(Size);
fail

5.1.4 FilenameFunc
> FilenameFunc (func) (function)
For a function func, FilenameFunc returns either fail or the absolute path of the file from which

func has been read. The return value fail occurs if func is a compiled function or an operation. For
functions that have been entered interactively, the string "*stdin*" is returned, see Section 9.5.

Example
gap> FilenameFunc(LEN_LIST); # a kernel function
fail
gap> FilenameFunc(Size); # an operation
fail
gap> FilenameFunc(x -> x”2); # an interactively entered function
"*stdin*"

GAP - Reterence Manual 77

gap> meth:= ApplicableMethod(Size, [Group(()) 1);;
gap> FilenameFunc(meth);
"... some path .../grpperm.gi"

5.1.5 StartlineFunc

> StartlineFunc (func) (function)
> EndlineFunc(func) (function)

Let func be a function. If FilenameFunc (5.1.4) returns fail for func then also
StartlineFunc returns fail. If FilenameFunc (5.1.4) returns a filename for func then
StartlineFunc returns the line number in this file where the definition of func starts.

EndlineFunc behaves similarly and returns the line number in this file where the definition of
func ends.

Example
gap> meth:= ApplicableMethod(Size, [Group(O) 1);;
gap> FilenameFunc(meth);

"... some path ... /lib/grpperm.gi"

gap> StartlineFunc(meth);

487

gap> EndlineFunc(meth);

487

5.1.6 LocationFunc

> LocationFunc (func) (function)

Let func be a function. Returns a string describing the location of func, or fail if the in-
formation cannot be found. This uses the information provided by FilenameFunc (5.1.4) and
StartlineFunc (5.1.5)

Example

gap> LocationFunc(Intersection);

"... some path ... gap/lib/coll.gi:2467"

String is an attribute, so no information is stored
gap> LocationFunc(String);

fail

5.1.7 PageSource

> PageSource(func[, nr]) (function)

This shows the file containing the source code of the function or method func in a pager (see
Pager (2.4.1)). The display starts at a line shortly before the code of func.

For operations func the function shows the source code of the declaration of func. Operations
can have several declarations, use the optional second argument to specify which one should be shown
(in the order the declarations were read); the default is to show the first.

For kernel functions the function tries to show the C source code.

If GAP cannot find a file containing the source code this will be indicated.

GAP - Reterence Manual 78

Usage examples:
met := ApplicableMethod(\~, [(1,2),2743527]); PageSource(met);
PageSource (Combinations) ;
PageSource (SORT_LIST) ;
PageSource(Size, 2);
ct := CharacterTable(Group((1,2,3)));
met := ApplicableMethod(Size, [ct]); PageSource(met);

5.2 Calling a function with a list argument that is interpreted as several
arguments

5.2.1 CallFuncList

> CallFuncList(func, args) (operation)
> CallFuncListWrap(func, args) (operation)

returns the result, when calling function func with the arguments given in the list args, i.e. args
is “unwrapped” so that args appears as several arguments to func.
Example

gap> CallFuncList(\+, [6, 71);
13

gap> #is equivalent to:

gap> \+(6, 7);

13

A more useful application of CallFuncList is for a function g that is called in the body of a
function £ with (a sublist of) the arguments of £, where f has been defined with a single formal
argument arg (see 4.11), as in the following code fragment.

Example

f := function (arg)
CallFunclist(g, arg);

end;

In the body of £ the several arguments passed to £ become a list arg. If g were called instead via
g(arg) then g would see a single list argument, so that g would, in general, have to “unwrap” the
passed list. The following (not particularly useful) example demonstrates both described possibilities
for the call to g.

Example
gap> PrintNumberFromDigits := function (arg)
> CallFunclList(Print, arg);
> Print("\n");
> end;
function(arg...) ... end
gap> PrintNumberFromDigits(1, 9, 7, 3, 2);
19732
gap> PrintDigits := function (arg)
> Print(arg);

GAP - Reterence Manual 79

> Print("\n");
> end;
function(arg...) ... end

gap> PrintDigits(1, 9, 7, 3, 2);
[1, 9,7, 3, 2]

CallFuncListWrap differs only in that the result is a list. This returned list is empty if the called
function returned no value, else it contains the returned value as its single member. This allows
wrapping functions which may, or may not return a value.

Example
gap> CallFuncListWrap(x -> x, [1]);
[1]
gap> CallFuncListWrap(function(x) end, [1]);
[1]

5.3 Wrapping a function, so the values produced are cached

5.3.1 MemoizePosIntFunction

> MemoizePosIntFunction(function[, options]) (function)

MemoizePosIntFunction returns a function which behaves the same as function, except it
caches the results for any inputs that are positive integers. Thus if the new function is called mul-
tiple times with the same input, then any call after the first will return the cached value, instead of
recomputing it. By default, the cache can be flushed by calling FlushCaches (79.10.4).

The returned function will by default only accept positive integers.

This function does not promise to never call function more than once for any input -- values
may be removed if the cache gets too large, or if FlushCaches (79.10.4) is called, or if multiple
threads try to calculate the same value simultaneously.

The optional second argument is a record which provides a number of configuration options. The
following options are supported.

defaults (default an empty list)
Used to initialise the cache, both initially and after each flush. If defaults[i] is bound, then
this is used as default vale for the input i.

flush (default true)
If this is true, the cache is emptied whenever FlushCaches (79.10.4) is called; if false, then
the cache cannot be flushed.

errorHandler (defaults to Error (6.6.1))
A function to be called when an input which is not a positive integer is passed to the cache. The
function can either raise an error, or else return a value which is then returned by the cache.
Note that such a value does not get cached itself.

Example
gap> f := MemoizePosIntFunction(

> function(i) Print("Check: ",i,"\n"); return i*i; end,
> rec(defaults := [,,50], errorHandler := x -> "Bad"));;

gap> £(2);
Check: 2

4

gap> £(2);
4

gap> £(3);
50

gap> £(-3);
"Bad"

gap> FlushCaches();
gap> £(2);
Check: 2

4

gap> £(3);
50

GAP - Reterence Manual 80

5.4 Functions that do nothing

The following functions return fixed results (or just their own argument). They can be useful in places
when the syntax requires a function, but actually no functionality is required. So ReturnTrue (5.4.1)
is often used as family predicate in InstallMethod (78.3.1).

5.4.1 ReturnTrue

> ReturnTrue(...)

(function)

This function takes any number of arguments, and always returns true.

gap> f:=ReturnTrue;
function(arg...)
gap> £O;

true

gap> £(42);

true

. end

Example

5.4.2 ReturnFalse

> ReturnFalse(...)

(function)

This function takes any number of arguments, and always returns false.

gap> f:=ReturnFalse;

function(arg...)
gap> £QO;
false

gap> f("any_string");

false

. end

Example

GAP - Reterence Manual 81

5.4.3 ReturnFail

> ReturnFail(...) (function)

This function takes any number of arguments, and always returns fail.

Example
gap> oops:=ReturnFail;

function(arg...) ... end

gap> oops();

fail

gap> oops(-42);

fail

5.4.4 ReturnNothing

> ReturnNothing(...) (function)

This function takes any number of arguments, and always returns nothing.

Example

gap> n:=ReturnNothing;
function(object...) ... end
gap> n();

gap> n(-42);

5.4.5 ReturnFirst

> ReturnFirst(...) (function)

This function takes one or more arguments, and always returns the first argument. IdFunc (5.4.6)
behaves similarly, but only accepts a single argument.

Example
gap> f:=ReturnFirst;
function(first, rest...) ... end
gap> £(1);
1
gap> £(2,3,4);
2
gap> £();
Error, Function: number of arguments must be at least 1 (not 0)

54.6 IdFunc

> IdFunc(obj) (function)

returns obj. ReturnFirst (5.4.5) is similar, but accepts one or more arguments, returning only
the first.

GAP - Reterence Manual 82

Example

gap> id:=IdFunc;

function(object) ... end

gap> 1d(42);

42

gap> f:=id(SymmetricGroup(3));

Sym(C [1 ..37)

gap> s:=0ne (AutomorphismGroup (SymmetricGroup(3)));
IdentityMapping(Sym([1 .. 31))

gap> f=s;

false

5.5 Function Types

Functions are GAP objects and thus have categories and a family.

5.5.1 IsFunction

> IsFunction(obj) (Category)

is the category of functions.

Example
gap> IsFunction(x->x"2);

true

gap> IsFunction(Factorial);

true

gap> f:=0ne (AutomorphismGroup (SymmetricGroup(3)));
IdentityMapping(Sym([1 .. 31))

gap> IsFunction(f);

false

5.5.2 FunctionsFamily

> FunctionsFamily (family)

is the family of all functions.

5.6 Naming Conventions

The way functions are named in GAP might help to memorize or even guess names of library func-
tions.

If a variable name consists of several words then the first letter of each word is capitalized.

If the first part of the name of a function is a verb then the function may modify its argument(s) but
does not return anything, for example Append (21.4.5) appends the list given as second argument to the
list given as first argument. Otherwise the function returns an object without changing the arguments,
for example Concatenation (21.20.1) returns the concatenation of the lists given as arguments.

GAP - Reterence Manual 83

If the name of a function contains the word “0f” then the return value is thought of as informa-
tion deduced from the arguments. Usually such functions are attributes (see 13.5). Examples are
Generators0fGroup (39.2.4), which returns a list of generators for the group entered as argument,
or DiagonalOfMat (24.12.1).

For the setter and tester functions of an attribute Attr the names SetAttr resp. HasAttr are
available (see 13.5).

If the name of a function contains the word “By” then the return value is thought of as
built in a certain way from the parts given as arguments. For example, creating a group
as a factor group of a given group by a normal subgroup can be done by taking the image
of NaturalHomomorphismByNormalSubgroup (39.18.1). Other examples of “By” functions are
GroupHomomorphismByImages (40.1.1) and LaurentPolynomialByCoefficients (66.13.1).

Often such functions construct an algebraic structure given by its generators (for exam-
ple, RingByGenerators (56.1.4)). In some cases, “By” may be replaced by “With” (like e.g.
GroupWithGenerators (39.2.3)) or even both versions of the name may be used. The difference
between StructByGenerators and StructWithGenerators is that the latter guarantees that the
GeneratorsOfStruct value of the result is equal to the given set of generators (see 31.3).

If the name of a function has the form “AsSomething” then the return value is an object (usually
a collection which has the same family of elements), which may, for example:

* know more about its own structure (and so support more operations) than its input (e.g. if the
elements of the collection form a group, then this group can be constructed using AsGroup
(39.2.5));

* discard its additional structure (e.g. AsList (30.3.8) applied to a group will return a list of its
elements);

* contain all elements of the original object without duplicates (like e.g. AsSet (30.3.10) does if
its argument is a list of elements from the same family);

* remain unchanged (like e.g. AsSemigroup (51.1.6) does if its argument is a group).

If Something and the argument of AsSomething are domains, some further rules apply as explained
in Tutorial: Changing the Structure.

If the name of a function funl ends with “NC” then there is another function fun2 with the same
name except that the NC is missing. NC stands for “no check”. When fun? is called then it checks
whether its arguments are valid, and if so then it calls fun1. The functions SubgroupNC (39.3.1) and
Subgroup (39.3.1) are a typical example.

The idea is that the possibly time consuming check of the arguments can be omitted if one is sure
that they are unnecessary. For example, if an algorithm produces generators of the derived subgroup
of a group then it is guaranteed that they lie in the original group; Subgroup (39.3.1) would check
this, and SubgroupNC (39.3.1) omits the check.

Needless to say, all these rules are not followed slavishly, for example there is one operation Zero
(31.10.3) instead of two operations ZeroOfElement and ZeroOfAdditiveGroup.

5.7 Code annotations (pragmas)

GAP supports the use of code annotations (pragmas) in functions, i.e., adding comments to func-
tions that are stored in the function object itself, unlike regular comments. Pragmas are single-line
comments, starting with #7:

GAP - Reterence Manual 84

Example
gap> function()
> #% This is a pragma
> # This is not a pragma
> return;
> end;;

gap> Display(last);
function ()
#% This is a pragma
return;
end

Pragmas can be used to mark parts of functions that should later be manipulated using 4.16.
Please note that heavy use of pragmas in functions slows down the execution of your function in
the same way as adding empty ; statements to your code.

Example
gap> a := function()
> local i;
> for i in [1 .. 1000000] do
> i:=1i+1;
> od;
> end;
function() ... end
gap> a();
gap> time;
14
gap> b := function()
> local i;
> for i in [1 .. 1000000] do
> i=1i+1;
> #), pragma
> #), pragma
> #J, pragma
> #), pragma
> #), pragma
> od;
> end;
function() ... end
gap> b(Q);
gap> time;
25

Chapter 6

Main Loop and Break Loop

This chapter is a first of a series of chapters that describe the interactive environment in which you use

GAP.

6.1 Main Loop

The normal interaction with GAP happens in the so-called read-eval-print loop. This means that
you type an input, GAP first reads it, evaluates it, and then shows the result. Note that the term print
may be confusing since there is a GAP function called Print (6.3.4) (see 6.3) which is in fact not
used in the read-eval-print loop, but traditions are hard to break. In the following, whenever we want
to express that GAP places some characters on the standard output, we will say that GAP shows
something.

The exact sequence in the read-eval-print loop is as follows.

To signal that it is ready to accept your input, GAP shows the prompt gap>. When you see this,
you know that GAP is waiting for your input.

Note that every statement must be terminated by a semicolon. You must also enter RETURN (i.e.,
strike the RETURN key) before GAP starts to read and evaluate your input. (The RETURN key may
actually be marked with the word ENTER and a returning arrow on your terminal.) Because GAP
does not do anything until you enter RETURN, you can edit your input to fix typos and only when
everything is correct enter RETURN and have GAP take a look at it (see 6.8). It is also possible to
enter several statements as input on a single line. Of course each statement must be terminated by a
semicolon.

It is absolutely acceptable to enter a single statement on several lines. When you have entered
the beginning of a statement, but the statement is not yet complete, and you enter RETURN, GAP
will show the partial prompt >. When you see this, you know that GAP is waiting for the rest of the
statement. This happens also when you forget the semicolon ; that terminates every GAP statement.
Note that when RETURN has been entered and the current statement is not yet complete, GAP will
already evaluate those parts of the input that are complete, for example function calls that appear as
arguments in another function call which needs several input lines. So it may happen that one has to
wait some time for the partial prompt.

When you enter RETURN, GAP first checks your input to see if it is syntactically correct (see
Chapter 4 for the definition of syntactically correct). If it is not, GAP prints an error message of the
following form

85

GAP - Reterence Manual 86

Example

gap> 1 * ;
Syntax error: Expression expected
1 *x

The first line tells you what is wrong about the input, in this case the * operator takes two ex-
pressions as operands, so obviously the right one is missing. If the input came from a file (see Read
(9.7.1)), this line will also contain the filename and the line number. The second line is a copy of the
input. And the third line contains a caret pointing to the place in the previous line where GAP realized
that something is wrong. This need not be the exact place where the error is, but it is usually quite
close.

Sometimes, you will also see a partial prompt after you have entered an input that is syntactically
incorrect. This is because GAP is so confused by your input, that it thinks that there is still something
to follow. In this case you should enter ; RETURN repeatedly, ignoring further error messages, until
you see the full prompt again. When you see the full prompt, you know that GAP forgave you and is
now ready to accept your next —hopefully correct— input.

If your input is syntactically correct, GAP evaluates or executes it, i.e., performs the required
computations (see Chapter 4 for the definition of the evaluation).

If you do not see a prompt, you know that GAP is still working on your last input. Of course, you
can type ahead, i.e., already start entering new input, but it will not be accepted by GAP until GAP
has completed the ongoing computation.

When GAP is ready it will usually show the result of the computation, i.e., the value computed.
Note that not all statements produce a value, for example, if you enter a for loop, nothing will be
printed, because the for loop does not produce a value that could be shown.

Also sometimes you do not want to see the result. For example if you have computed a value and
now want to assign the result to a variable, you probably do not want to see the value again. You can
terminate statements by two semicolons to suppress showing the result.

If you have entered several statements on a single line GAP will first read, evaluate, and show the
first one, then read, evaluate, and show the second one, and so on. This means that the second statement
will not even be checked for syntactical correctness until GAP has completed the first computation.

After the result has been shown GAP will display another prompt, and wait for your next input.
And the whole process starts all over again. Note that if you have entered several statements on a
single line, a new prompt will only be printed after GAP has read, evaluated, and shown the last
statement.

In each statement that you enter, the result of the previous statement that produced a value is
available in the variable 1ast. The next to previous result is available in 1ast2 and the result produced

before that is available in 1last3.
Example

gap> 1;2;3;

1

2

3

gap> last3 + last2 * last;
7

Also in each statement the time spent by the last statement, whether it produced a value or
not, is available in the variable time (7.6.4). This is an integer that holds the number of mil-

GAP - Reterence Manual 87

liseconds. Similarly the amount of memory allocated during that statement (in bytes) is stored
in the variable memory_allocated (7.7.2). The variables last, last2, last3, time (7.6.4) and
memory_allocated (7.7.2) are all write-protected.

6.2 Special Rules for Input Lines

The input for some GAP objects may not fit on one line, in particular big integers, long strings or
long identifiers. In these cases you can still type or paste them in long single lines. For nicer display
you can also specify the input on several lines. This is achieved by ending a line by a backslash or
by a backslash and a carriage return character, then continue the input on the beginning of the next
line. When reading this GAP will ignore such continuation backslashes, carriage return characters
and newline characters. GAP also prints long strings and integers this way.

Example

gap> n := 1234\

> 567890;

1234567890

gap> "This is a very long string that does not fit on a line \

> and is therefore continued on the next line.";

"This is a very long string that does not fit on a line and is therefo\
re continued on the next line."

gap> bla\

> bla := 5;; blabla;

5

There is a special rule about GAP prompts in input lines: In line editing mode (usual user input
and GAP started without -n) in lines starting with whitespace following gap> , > or brk> this
beginning part is removed. This rule is very convenient because it allows to cut and paste input from
other GAP sessions or manual examples easily into your current session.

6.3 View and Print

GAP has three different operations to display or print objects: Display (6.3.6), ViewObj (6.3.5) and
PrintObj (6.3.5), and these three have different purposes as follows. The first, Display (6.3.6),
should print the object to the standard output in a human-readable relatively complete and verbose
form. The second, ViewObj (6.3.5), should print the object to the standard output in a short and concise
form, it is used in the main read-eval-print loop to display the resulting object of a computation. The
third, Print0bj (6.3.5), should print the object to the standard output in a complete form which is
GAP-readable if at all possible, such that reading the output into GAP produces an object which is
equal to the original one.

All three operations have corresponding operations which do not print anything to standard out-
put but return the output as a string. These are DisplayString (27.7.1), ViewString (27.7.3) and
PrintString (27.7.5) (corresponding to Print0bj (6.3.5)). Additionally, there is String (27.7.6)
which is very similar to PrintString (27.7.5) but does not insert control characters for line breaks.

For implementation convenience it is allowed that some of these operations have methods which
delegate to some other of these operations. However, the rules for this are that a method may only
delegate to another operation which appears further down in the following table:

GAP - Reterence Manual 88

Display (6.3.6)
ViewObj (6.3.5)
Print0bj (6.3.5)
DisplayString (27.7.1)
ViewString (27.7.3)
PrintString (27.7.5)
String (27.7.6)

This is to avoid circular delegations.

Note in particular that none of the methods of the string producing operations may delegate to the
corresponding printing operations. Note also that the above mentioned purposes of the different oper-
ations suggest that delegations between different operations will be sub-optimal in most scenarios.

6.3.1 Default delegations in the library

The library contains the following low ranked default methods:

* A method for DisplayString (27.7.1) which returns the constant value of the global variable
DEFAULTDISPLAYSTRING (27.7.2).

* A method for ViewString (27.7.3) which returns the constant value of the global variable
DEFAULTVIEWSTRING (27.7.4).

* A method for Display (6.3.6) which first calls DisplayString (27.7.1) and prints the result, if
it is a different object than DEFAULTDISPLAYSTRING (27.7.2). Otherwise the method delegates
to Print0bj (6.3.5).

* A method for ViewObj (6.3.5) which first calls ViewString (27.7.3) and prints the result, if
it is a different object than DEFAULTVIEWSTRING (27.7.4). Otherwise the method delegates to
Print0bj (6.3.5).

A method for Print0bj (6.3.5) which prints the result of PrintString (27.7.5).

* A method for PrintString (27.7.5) which returns the result of String (27.7.6)

6.3.2 Recommendations for the implementation

This subsection describes what methods for printing and viewing one should implement for new GAP
objects.

One should at the very least install a String (27.7.6) method to allow printing. Using the standard
delegations this enables a limited form of viewing, displaying and printing.

If, for larger objects, nicer line breaks are needed, one should install a separate PrintString
(27.7.5) method which puts in positions for good line breaks using the control characters \< (ASCII
1) and \> (ASCII 2).

If, for even larger objects, output performance and memory usage matters, one should install a
separate PrintObj (6.3.5) method.

One should usually install a ViewString (27.7.3) method, unless the above String (27.7.6)
method is good enough for ViewObj (6.3.5) purposes. Performance and memory should never matter
here, so it is usually unnecessary to install a separate ViewObj (6.3.5) method.

GAP - Reterence Manual 89

If the type of object calls for it one should install a DisplayString (27.7.1) method. This is the
case if a human readable verbose form is required.

If the performance and memory usage for Display (6.3.6) matters, one should install a separate
Display (6.3.6) method.

Note that if only a String (27.7.6) method is installed, then ViewObj (6.3.5) works and
ViewString (27.7.3) returns DEFAULTVIEWSTRING (27.7.4). Likewise, Display (6.3.6) works and
DisplayString (27.7.1) returns DEFAULTDISPLAYSTRING (27.7.2). If you want to avoid this then
install methods for these operations as well.

6.3.3 View

> VieW(Objl, obj2..) (function)

View shows the objects obj1, obj2... etc. in a short form on the standard output by calling the
ViewObj (6.3.5) operation on each of them. View is called in the read-eval-print loop, thus the output
looks exactly like the representation of the objects shown by the main loop. Note that no space or
newline is printed between the objects.

6.3.4 Print
> Print(objl, obj2, ...) (function)

Also Print shows the objects obj1, obj2... etc. on the standard output. The difference compared
to View (6.3.3) is in general that the shown form is not required to be short, and that in many cases the
form shown by Print is GAP readable.

Example
gap> z:= Z(2);

Z(2)-0

gap> v:= [z, z, z, z, z, 2z, z];

[Z(2)~0, Z(2)~0, Z2(2)~0, Z(2)~0, Z(2)~0, Z(2)~0, Z(2)~0]
gap> ConvertToVectorRep(v);; v;

<a GF2 vector of length 7>

gap> Print(v, "\n");

[Zz(2)~0, Z(2)~0, Z(2)~0, Z(2)~0, Z(2)~0, Z(2)~0, Z(2)-0]

Another difference is that Print shows strings without the enclosing quotes, so Print can be used
to produce formatted text on the standard output (see also chapter 27). Some characters preceded by a
backslash, such as \n, are processed specially (see chapter 27.2). PrintTo (9.7.3) can be used to print
to a file.

Example
gap> for i in [1..5] do
> Print(i, " ", i~2, " ", i~3, "\n");
> od;
111
2438
3927
4 16 64
5 25 125

gap> g:= SmallGroup(12,5);

GAP - Reterence Manual 90

<pc group of size 12 with 3 generators>
gap> Print(g, "\n");

Group([f1, £2, £3])

gap> View(g); Print("\n");

<pc group of size 12 with 3 generators>

6.3.5 ViewObj

> ViewObj (Obj) (operation)
> Print Obj (Obj) (operation)

The functions View (6.3.3) and Print (6.3.4) actually call the operations ViewObj and Print0Obj,
respectively, for each argument. By installing special methods for these operations, it is possible to
achieve special printing behavior for certain objects (see chapter 78). The only exceptions are strings
(see Chapter 27), for which the default PrintObj and ViewObj methods as well as the function View
(6.3.3) print also the enclosing doublequotes, whereas Print (6.3.4) strips the doublequotes.

The default method for ViewOb]j is to call Print0bj. Soitis sufficient to have a Print0bj method
for an object in order to View (6.3.3) it. If one wants to supply a “short form” for View (6.3.3), one
can install additionally a method for ViewObj.

6.3.6 Display
> Display (obj) (operation)

Displays the object obj in a nice, formatted way which is easy to read (but might be difficult for
machines to understand). The actual format used for this depends on the type of obj. Each method
should print a newline character as last character.

Example
gap> Display([[1, 2, 31, [4, 5, 611 x Z(5));
241
3.2

One can assign a string to an object that Print (6.3.4) will use instead of the default used by
Print (6.3.4), via SetName (12.8.1). Also, Name (12.8.2) returns the string previously assigned to the
object for printing, via SetName (12.8.1). The following is an example in the context of domains.
Example

gap> g:= Group((1,2,3,4));
Group([(1,2,3,4) 1)

gap> SetName(g, "C4"); g;
C4

gap> Name(g);

||C4||

When setting up examples, in particular if for beginning users, it sometimes can be convenient
to hide the structure behind a printing name. For many objects, such as groups, this can be done
using SetName (12.8.1). If the objects however is represented internally, for example permutations
representing group elements, this function is not applicable. Instead the function SetNameObject
(6.3.7) can be used to interface with the display routines on a lower level.

GAP - Reterence Manual 91

6.3.7 SetNameObject

> SetNameObject(o, s) (function)

SetNameObject sets the string s as display name for object o in an interactive session. When
applying View (6.3.3) to object o, for example in the system’s main loop, GAP will print the string s.
Calling SetNameObject for the same object o with s set to fail (20.2.1) deletes the special viewing
setup. Since use of this features potentially slows down the whole print process, this function should
be used sparingly.

Example

gap> SetNameObject(3,"three");
gap> Filtered([1..10],IsPrimelnt);
[2, three, 5, 7 1]

gap> SetNameObject(3,fail);

gap> Filtered([1..10],IsPrimelnt);
[2, 3,5, 7]

6.4 Break Loops

When an error has occurred or when you interrupt GAP (usually by hitting CTRL-C) GAP enters a
break loop, that is in most respects like the main read eval print loop (see 6.1). That is, you can enter
statements, GAP reads them, evaluates them, and shows the result if any. However those evaluations
happen within the context in which the error occurred. So you can look at the arguments and local
variables of the functions that were active when the error happened and even change them. The prompt
is changed from gap> to brk> to indicate that you are in a break loop.

Example

gap> 1/0;

Rational operations: <divisor> must not be zero

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <divisor> via ’return <divisor>;’ to continue

If errors occur within a break loop GAP enters another break loop at a deeper level. This is
indicated by a number appended to brk:

Example

brk> 1/0;

Rational operations: <divisor> must not be zero

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <divisor> via ’return <divisor>;’ to continue
brk_02>

There are two ways to leave a break loop, see 6.4.1 and 6.4.2.

GAP - Reterence Manual 92

6.4.1 (quit from a break loop

The first way to leave a break loop is to quit the break loop. To do this you enter quit; or type the eof
(end of file) character, which is usually CTRL-D except when using the -e option (see Section 3.1).
Note that GAP code between quit; and the end of the input line is ignored.

Example

brk_02> quit;
brk>

In this case control returns to the break loop one level above or to the main loop, respectively. So
iterated break loops must be left iteratively. Note also that if you type quit; from a gap> prompt,
GAP will exit (see 6.7).

Note: If you leave a break loop with quit without completing a command it is possible (though
not very likely) that data structures will be corrupted or incomplete data have been stored in objects.
Therefore no guarantee can be given that calculations afterwards will return correct results! If you
have been using options quitting a break loop generally leaves the options stack with options you no
longer want. The function ResetOptionsStack (8.1.3) removes all options on the options stack, and
this is the sole intended purpose of this function.

6.4.2 return from a break loop

The other way to leave a break loop is to return from a break loop. To do this you type return; or
return obj;. If the break loop was entered because you interrupted GAP, then you can continue
by typing return;. If the break loop was entered due to an error, you may have to modify the value
of a variable before typing return; (see the example for IsDenseList (21.1.2)) or you may have to
return an object obj (by typing: return obj ;) to continue the computation; in any case, the message
printed on entering the break loop will tell you which of these alternatives is possible. For example, if
the break loop was entered because a variable had no assigned value, the value to be returned is often
a value that this variable should have to continue the computation.

Example
brk> return 9; # we had tried to enter the divisor 9 but typed O ...

1/9
gap>

6.4.3 OnBreak

> OnBreak() (function)

By default, when a break loop is entered, GAP prints a trace of the innermost 5 commands cur-
rently being executed. This behaviour can be configured by changing the value of the global variable
OnBreak. When a break loop is entered, the value of OnBreak is checked. If it is a function, then it is
called with no arguments. By default, the value of OnBreak is Where (6.4.5).

Example
gap> OnBreak := function() Print("Hello\n"); end;
function() ... end

GAP - Reterence Manual 93

Example

gap> Error("!\n");

Error, !

Hello

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

brk> quit;

In cases where a break loop is entered during a function that was called with options (see Chap-
ter 8), a quit; will also cause the options stack to be reset and an Info-ed warning stating this is
emitted at InfoWarning (7.4.8) level 1 (see Chapter 7.4).

Note that for break loops entered by a call to Error (6.6.1), the lines after “Entering break
read-eval-print loop ” and before the brk> prompt can also be customised, namely by re-
defining OnBreakMessage (6.4.4).

Also, note that one can achieve the effect of changing OnBreak locally. As mentioned above,
the default value of OnBreak is Where (6.4.5). Thus, a call to Error (6.6.1) generally gives a trace
back up to five levels of calling functions. Conceivably, we might like to have a function like Error
(6.6.1) that does not trace back without globally changing OnBreak. Such a function we might call
ErrorNoTraceBack and here is how we might define it. (Note ErrorNoTraceBack is not a GAP
function.)

Example
gap> ErrorNoTraceBack := function(arg) # arg is special variable that GAP

> # knows to treat as list of arg’s
> local SavedOnBreak, ENTBOnBreak;

> SavedOnBreak := OnBreak; # save current value of OnBreak
>

> ENTBOnBreak := function() # our ‘local’ OnBreak

> local s;

> for s in arg do

> Print(s);

> od;

> OnBreak := SavedOnBreak; # restore OnBreak afterwards

> end;

>

> OnBreak := ENTBOnBreak;

> Error();

> end;

function(arg...) ... end

Here is a somewhat trivial demonstration of the use of ErrorNoTraceBack.
Example
gap> ErrorNoTraceBack("Gidday!", " How’s", " it", " going?\n");
Error, Gidday! How’s it going?

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk> quit;

Now we call Error (6.6.1) with the same arguments to show the difference.

GAP - Reterence Manual 94

Example
gap> Error("Gidday!", " How’s", " it", " going?\n");
Error, Gidday! How’s it going?
Hello

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

brk> quit;

Observe that the value of OnBreak before the ErrorNoTraceBack call was restored. However,
we had changed OnBreak from its default value; to restore OnBreak to its default value, we should do
the following.

Example

gap> OnBreak := Where;;

6.44 OnBreakMessage

> OnBreakMessage O (function)

When a break loop is entered by a call to Error (6.6.1) the message after the “Entering break
read-eval-print loop ...” line is produced by the function OnBreakMessage, which just like
OnBreak (6.4.3) is a user-configurable global variable that is a function with no arguments.

Example
gap> OnBreakMessage(); # By default, OnBreakMessage prints the following
you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

Perhaps you are familiar with what’s possible in a break loop, and so don’t need to be reminded.
In this case, you might wish to do the following (the first line just makes it easy to restore the default
value later).

Example
gap> NormalOnBreakMessage := OnBreakMessage;; # save the default value
gap> OnBreakMessage := function() end; # do-nothing function
function() ... end
gap> OnBreakMessage();
gap> OnBreakMessage := NormalOnBreakMessage;; # reset

With OnBreak (6.4.3) still set away from its default value, calling Error (6.6.1) as we did above,
now produces:

Example

gap> Error("!\n");

Error, !

Hello

Entering break read-eval-print loop ...
brk> quit; # to get back to outer loop

GAP - Reterence Manual 95

However, suppose you are writing a function which detects an error condition and
OnBreakMessage needs to be changed only locally, i.e., the instructions on how to recover from
the break loop need to be specific to that function. The same idea used to define ErrorNoTraceBack
(see OnBreak (6.4.3)) can be adapted to achieve this. The function CosetTableFromGensAndRels
(47.6.5) is an example in the GAP code where the idea is actually used.

6.4.5 Where

> Where (nr) (function)
> WhereWithVars (ar) (function)

shows the last nr commands on the execution stack during whose execution the error occurred. If
not given, nr defaults to 5. (Assume, for the following example, that after the last example OnBreak
(6.4.3) has been set back to its default value.). WhereWithVars acts the same as Where while also
showing the arguments and local variables of each function.

Example
gap> StabChain(SymmetricGroup(100)); # After this we typed ~C
user interrupt at
bpt := S.orbit[1];
called from

SiftedPermutation(S, (g * rep) ~ -1) called from
StabChainStrong(S.stabilizer, [sch], options); called from
StabChainStrong(S.stabilizer, [sch], options); called from
StabChainStrong(S, Generators0fGroup(G), options); called from
StabChainOp(G, rec(

)) called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> Where(2);
called from
SiftedPermutation(S, (g * rep) ~ -1) called from
StabChainStrong(S.stabilizer, [sch], options); called from

Note that the variables displayed even in the first line of the Where list (after the called from
line) may be already one environment level higher and DownEnv (6.5.1) may be necessary to access
them.

At the moment this backtrace does not work from within compiled code (this includes the method
selection which by default is compiled into the kernel). If this creates problems for debugging, call
GAP with the -M option (see 3.1) to avoid loading compiled code.

(Function calls to Info (7.4.6) and methods installed for binary operations are handled in a special
way. In rare circumstances it is possible therefore that they do not show up in a Where log but the log
refers to the last proper function call that happened before.)

The command line option -T to GAP disables the break loop. This is mainly intended for testing
purposes and for special applications. If this option is given then errors simply cause GAP to return
to the main loop.

GAP - Reterence Manual 96

6.5 Variable Access in a Break Loop

In a break loop access to variables of the current break level and higher levels is possible, but if the
same variable name is used for different objects or if a function calls itself recursively, of course only
the variable at the lowest level can be accessed.

6.5.1 DownEnv and UpEnv

> DownEnv (ar) (function)
> UpEnv(ar) (function)

DownEnv moves down nr steps in the environment and allows one to inspect variables on this
level; if nr is negative it steps up in the environment again; nr defaults to 1 if not given. UpEnv
acts similarly to DownEnv but in the reverse direction (the mnemonic rule to remember the difference
between DownEnv and UpEnv is the order in which commands on the execution stack are displayed by
Where (6.4.5)).

Example
gap> OnBreak := function() Where(0); end;; # eliminate back-tracing on
gap> # entry to break loop
gap> test:= function(n)
> if n > 3 then Error("!'\n"); fi; test(n+1); end;;
gap> test(1);
Error, !
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> Where();
called from
test(n + 1); called from
test(n + 1); called from
test(n + 1); called from
<function>(<arguments>) called from read-eval-loop
brk> n;
4
brk> DownEnv() ;
brk> n;
3
brk> Where();
called from
test(n + 1); called from
test(n+ 1); called from
<function>(<arguments>) called from read-eval-loop
brk> DownEnv(2);
brk> n;
1
brk> Where();
called from
<function>(<arguments>) called from read-eval-loop
brk> DownEnv(-2);
brk> n;
3

GAP - Reterence Manual 97

brk> quit;
gap> OnBreak := Where;; # restore OnBreak to its default value

Note that the change of the environment caused by DownEnv only affects variable access in the
break loop. If you use return to continue a calculation GAP automatically jumps to the right envi-
ronment level again.

Note also that search for variables looks first in the chain of outer functions which enclosed the
definition of a currently executing function, before it looks at the chain of calling functions which led
to the current invocation of the function.

Example
gap> foo := function()
> local x; x := 1;
> return function() local y; y := x*x; Error("!!\n"); end;
> end;
function() ... end
gap> bar := foo();
function() ... end
gap> fun := function() local x; x := 3; bar(); end;
function() ... end
gap> fun();
Error, !!

called from
bar(); called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> x;
1
brk> DownEnv(1);
brk> x;
3

Here the x of foo which contained the definition of bar is found before that of fun which caused
its execution. Using DownEnv we can access the x from fun.

6.6 Error and ErrorCount

6.6.1 Error

> Error(messages, ...) (function)

Error signals an error from within a function. First the messages messages are printed, this
is done exactly as if Print (6.3.4) (see 6.3) were called with these arguments. Then a break loop
(see 6.4) is entered, unless the standard error output is not connected to a terminal. You can leave
this break loop with return; to continue execution with the statement following the call to Error.
ErrorNoReturn (6.6.2) operates identically to Error, except it does not allow using return; to
continue execution.

GAP - Reterence Manual 98

6.6.2 ErrorNoReturn

> ErrorNoReturn(messages, ...) (function)

ErrorNoReturn signals an error from within a function. First the messages messages are printed,
this is done exactly as if Print (6.3.4) (see 6.3) were called with these arguments. Then a break loop
(see 6.4) is entered, unless the standard error output is not connected to a terminal. This break loop
can only be exited with quit;. The function differs from Error (6.6.1) by not allowing execution to
continue.

6.6.3 ErrorCount

> ErrorCount () (function)

ErrorCount returns a count of the number of errors (including user interruptions) which have
occurred in the GAP session so far. The count is incremented by each error, even if GAP was started
with the -T option to disable the break loop.

6.7 Leaving GAP

The normal way to terminate a GAP session is to enter either quit; (note the semicolon) or an
end-of-file character (usually CTRL-D) at the gap> prompt in the main read eval print loop.
6.7.1 QUIT

> QUIT (global variable)

An emergency way to leave GAP is to enter QUIT at any gap> or brk> or brk_nn> prompt.

6.7.2 GapExitCode

> GapExitCode ([ret]) (function)

GapExitCode sets the exit value which is returned to the operating system (or parent process)
when GAP exits. This may be an integer in the range [-128..127] (other values are reduced modulo
256), or a boolean. true corresponds to the return value 0, which by convention is treated as "success".
false corresponds to the return value 1, which by convention is treated as "failure". The exit value is
not changed if no argument is given.

The previous exit code is returned.

6.7.3 QuitGap
> QuitGap([ret]) (function)
QuitGap acts similarly to the keyword QUIT, except QUIT cannot be called from a function. It exits

GAP cleanly, calling any function installed using InstallAtExit (6.7.5). The optional argument ret
will be passed to GapExitCode (6.7.2).

GAP - Reterence Manual 99

6.7.4 ForceQuitGap

> ForceQuitGap([ret]) (function)

ForceQuitGap is similar to QuitGap (6.7.3), except it ignores any functions installed with
InstallAtExit (6.7.5), or any other functions normally run at GAP exit, such as flushing any par-
tially outputted lines to both the screen and files, and exits GAP immediately. The optional argument
ret will be passed to GapExitCode (6.7.2).

6.7.5 InstallAtExit

> InstallAtExit (func) (function)
> QUITTING (global variable)

Before actually terminating, GAP will call (with no arguments) all of the functions that have been
installed using InstallAtExit. These typically perform tasks such as cleaning up temporary files
created during the session, and closing open files. If an error occurs during the execution of one of
these functions, that function is simply abandoned, no break loop is entered.

Example
gap> InstallAtExit(function() Print("bye\n"); end);
gap> quit;
bye

During execution of these functions, the global variable QUITTING will be set to true if GAP is
exiting because the user typed QUIT and false otherwise. Since QUIT is considered as an emergency
measure, different action may be appropriate.

6.7.6 SaveOnExitFile

> SaveOnExitFile (global variable)

If, when GAP is exiting due to a quit or end-of-file (i.e. not due to a QUIT) the variable
SaveOnExitFile is bound to a string value, then the system will try to save the GAP workspace
to that file, see SaveWorkspace (3.3.1).

6.8 Line Editing

In most installations GAP will be compiled to use the Gnu readline library (see the line Libs used:
on GAP startup). In that case skip to the next section 6.9. (The line editing commands described in
the rest of this section were available in previous versions of GAP, they will work almost the same in
the standard configuration of the Gnu readline library.)

GAP allows one you to edit the current input line with a number of editing commands. Those com-
mands are accessible either as control keys or as escape keys. You enter a control key by pressing the
CTRL key, and, while still holding the CTRL key down, hitting another key key. You enter an escape
key by hitting ESC and then hitting another key key. Below we denote control keys by CTRL-key and
escape keys by EsC-key. The case of key does not matter, i.e., CTRL-A and CTRL-A are equivalent.

GAP - Reterence Manual 100

Normally, line editing will be enabled if the input is connected to a terminal. Line editing can be
enabled or disabled using the command line options -f and -n respectively (see 3.1), however this is
a machine dependent feature of GAP.

Typing CTRL-KEY or ESC-KEY for characters not mentioned below always inserts CTRL-key
resp. ESC-key at the current cursor position.

The first few commands allow you to move the cursor on the current line.

CTRL-A
move the cursor to the beginning of the line.

Esc-B
move the cursor to the beginning of the previous word.

CTRL-B
move the cursor backward one character.

CTRL-F
move the cursor forward one character.

Esc-F
move the cursor to the end of the next word.

CTRL-E
move the cursor to the end of the line.

The next commands delete or kill text. The last killed text can be reinserted, possibly at a different
position, with the “yank” command CTRL-Y.

CTRL-H or del
delete the character left of the cursor.

CTRL-D
delete the character under the cursor.

CTRL-K
kill up to the end of the line.

Esc-D
kill forward to the end of the next word.

ESC-DEL
kill backward to the beginning of the last word.

CTRL-X
kill entire input line, and discard all pending input.

CTRL-Y
insert (yank) a just killed text.

The next commands allow you to change the input.

GAP - Reterence Manual 101

CTRL-T
exchange (twiddle) current and previous character.

Esc-U
uppercase next word.

Esc-L
lowercase next word.

Esc-C
capitalize next word.

The TAB character, which is in fact the control key CTRL-I, looks at the characters before the
cursor, interprets them as the beginning of an identifier and tries to complete this identifier. If there is
more than one possible completion, it completes to the longest common prefix of all those completions.
If the characters to the left of the cursor are already the longest common prefix of all completions
hitting TAB a second time will display all possible completions.

TAB complete the identifier before the cursor.
The next commands allow you to fetch previous lines, e.g., to correct typos, etc.

CTRL-L
insert last input line before current character.

CTRL-P
redisplay the last input line, another CTRL-P will redisplay the line before that, etc. If the cursor
is not in the first column only the lines starting with the string to the left of the cursor are taken.

CTRL-N
Like CTRL-P but goes the other way round through the history.

Esc-<
goes to the beginning of the history.

Esc->
goes to the end of the history.

CTRL-0O
accepts this line and perform a CTRL-N.

Finally there are a few miscellaneous commands.

CTRL-V
enter next character literally, i.e., enter it even if it is one of the control keys.

CTRL-U
execute the next line editing command 4 times.

ESC-num
execute the next line editing command num times.

GAP - Reterence Manual 102

Esc-CTRL-L
redisplay input line.

The four arrow keys (cursor keys) can be used instead of CTRL-B, CTRL-F, CTRL-P, and
CTRL-N, respectively.

6.9 Editing using the readline library

The descriptions in this section are valid only if your GAP installation uses the readline library for
command line editing. You can check by IsBound (GAPInfo.UseReadline) ; if this is the case.

You can wuse all the features of readline, as for example explained in
https://tiswww.case.edu/php/chet/readline/rluserman.html. Therefore the com-
mand line editing in GAP is similar to the bash shell and many other programs. On a Unix/Linux
system you may also have a manpage, try man readline.

Compared to the command line editing which was used in GAP up to version 4.4 (or compared to
not using the readline library) using readline has several advantages:

* Most keys still do the same as explained in 6.8 (in the default configuration).

* There are many additional commands, e.g. undoing (CTRL-_, keyboard macros (CTRL-X(,
CTRL-X) and CTRL-XE), file name completion (hit ESC two or four times), showing matching
parentheses, vi-style key bindings, deleting and yanking text, ...

* Lines which are longer than a physical terminal row can be edited more conveniently.
* Arbitrary unicode characters can be typed into string literals.

* The key bindings can be configured, either via your ~/.inputrc file or by GAP commands,
see 6.9.1.

* The command line history can be saved to and read from a file, see 6.9.2.
* Adventurous users can even implement completely new command line editing functions on
GAP level, see 6.9.4.
6.9.1 Readline customization

You can use your readline init file (by default /. inputrc on Unix/Linux) to customize key bindings.
If you want settings be used only within GAP you can write them between lines containing $if GAP

and $endif. For a detailed documentation of the available settings and functions see here.
From readline init file

$if GAP
set blink-matching-paren on
"\C-x\C-0": dump-functions
"\ep": kill-region

$endif

Alternatively, from within GAP the command ReadlineInitLine(1ine) ; can be used, where 1ine
is a string containing a line as in the init file.

https://tiswww.case.edu/php/chet/readline/rluserman.html
 https://tiswww.case.edu/php/chet/readline/rluserman.html

GAP - Reterence Manual 103

Caveat: GAP overwrites the following keys (after reading the ~/.inputrc file): \C-g, \C-1i,
\C-n, \C-o, \C-p, \C-r, \C-\, \e<, \e>, Up, Down, TAB, Space, PageUp, PageDown. So, do not
redefine these in your ~/ . inputrc.

Note that after pressing CTRL-V the next special character is input verbatim. This is very
useful to bind keys or key sequences. For example, binding the function key F3 to the com-
mand kill-whole-line by using the sequence CTRL-V F3 looks on many terminals like this:
ReadlineInitLine("\"~[0R\":kill-whole-1ine");. (You can get the line back later with
CTRL-Y.)

The CTRL-G key can be used to type any unicode character by its code point. The number of the
character can either be given as a count, or if the count is one the input characters before the cursor
are taken (as decimal number or as hex number which starts with 0x. For example, the double stroke
character Z can be input by any of the three key sequences ESC 8484 CTRL-G, 8484 CTRL-G or
0x2124 CTRL-G.

Some terminals bind the CTRL-S and CTRL-Q keys to stop and restart terminal output. Further-
more, sometimes CTRL-\ quits a program. To disable this behaviour (and maybe use these keys for
command line editing) you can use Exec("stty stop undef; stty start undef; stty quit
undef") ; in your GAP session or your gaprec file (see 3.2).

6.9.2 The command line history

GAP can save your input lines for later reuse. The keys CTRL-P (or UP), CTRL-N (or DOWN), ESC<
and ESC> work as documented in 6.8, that is they scroll backward and forward in the history or go
to its beginning or end. Also, CTRL-0 works as documented, it is useful for repeating a sequence of
previous lines. (But CTRL-L clears the screen as in other programs.)

The command line history can be used across several instances of GAP via the following two
commands.

6.9.3 SaveCommandLineHistory

> SaveCommandLineHistory([fname][,] [app]) (function)
Returns: fail or number of saved lines
> ReadCommandLineHistory([fname][,] [app]) (function)

Returns: fail or number of added lines

The first command saves the lines in the command line history to the file given by the string
fname. The default for fname is history in the user’s GAP root path GAPInfo.UserGapRoot or
"~/ .gap_hist" if this directory does not exist. If the optional argument app is true then the lines
are appended to that file otherwise the file is overwritten.

The second command is the converse, it reads the lines from file fname. If the optional argument
app is true the lines are appended to the history, else it prepends them.

By default, the command line history stores up to 1000 input lines. command line history. This
number may be restricted or enlarged via via SetUserPreference("HistoryMaxLines", num);
which may be set to a non negative number num to store up to num input lines or to infinity to
store arbitrarily many lines. An automatic storing and restoring of the command line history can be
configured via SetUserPreference("SaveAndRestoreHistory", true) ;.

Note that these functions are only available if your GAP is configured to use the readline library.

GAP - Reterence Manual 104

6.9.4 Writing your own command line editing functions

It is possible to write new command line editing functions in GAP as follows.

The functions have one argument 1 which is a list with five entries of the form [count, key,
line, cursorpos, markpos] where count and key are the last pressed key and its count (these
are not so useful here because users probably do not want to overwrite the binding of a single key),
then 1ine is a string containing the line typed so far, cursorpos is the current position of the cursor
(point), and markpos the current position of the mark.

The result of such a function must be a list which can have various forms:

[str]
with a string str. In this case the text str is inserted at the cursor position.

[kill, begin, end]
where kill is true or false and begin and end are positions on the input line. This removes
the text from the lower position to before the higher position. If kill is true the text is killed,
i.e. put in the kill ring for later yanking.

[begin, end, str]
where begin and end are positions on the input line and str is a string. Then the text from
position begin to before end is substituted by str.

[1, lstr]
where 1str is a list of strings. Then these strings are displayed like a list of possible comple-
tions. The input line is not changed.

[2, chars]
where chars is a string. The characters from chars are used as the next characters from the
input. (At most 512 characters are possible.)

[100]
This rings the bell as configured in the terminal.

In the first three cases the result list can contain a position as a further entry, this becomes the new
cursor position. Or it can contain two positions as further entries, these become the new cursor position
and the new position of the mark.

Such a function can be installed as a macro for readline via InstallReadlineMacro (name,
fun) ; where name is a string used as name of the macro and fun is a function as above. This macro
can be called by a key sequence which is returned by InvocationReadlineMacro (name) ;.

As an example we define a function which puts double quotes around the word under or before
the cursor position. The space character, the characters in " (,)", and the beginning and end of the
line are considered as word boundaries. The function is then installed as a macro and bound to the key
sequence EScC Q.

Example

gap> EditAddQuotes := function(l)
> local str, pos, i, j, new;

> str := 1[3];

> pos := 1[4];

> i := pos;

> while i > 1 and (not str[i-1] in ",(") do

GAP - Reterence Manual 105

> i:=1i-1;

> od;

> j := pos;

> while IsBound(str[j]) and not str[j] in ",) " do
> j o= j+1;

> od;

> new := "\"";

> Append(new, str{[i..j-11});

> Append(new, "\"");

> return [i, j, new];

> end;;
gap> InstallReadlineMacro("addquotes", EditAddQuotes);
gap> invl := InvocationReadlineMacro("addquotes");;

gap> ReadlineInitLine(Concatenation("\"\\eQ\":\"",invl,"\""));;

6.10 Editing Files

In most cases, it is preferable to create longer input (in particular GAP programs) separately in an
editor, and to read in the result via Read (9.7.1). Note that Read (9.7.1) by default reads from the
directory in which GAP was started (respectively under Windows the directory containing the GAP
binary), so you might have to give an absolute path to the file.

If you cannot create several windows, the Edit (6.10.1) command may be used to leave GAP,
start an editor, and read in the edited file automatically.

6.10.1 Edit

> Edit(filename) (function)

Edit starts an editor with the file whose filename is given by the string filename, and reads the
file back into GAP when you exit the editor again.

GAP will call your preferred editor if you call SetUserPreference ("Editor", path); where
path is the path to your editor, e.g., /usr/bin/vim. On Windows you can use edit . com.

Under macOS, you should use SetUserPreference("Editor", "open");, this will open the
file in the default editor. If you call SetUserPreference ("EditorOptions", ["-t"]);, the file
will open in TextEdit, and SetUserPreference("EditorOptions", ["-a", "<appl>"]); will
open the file using the application <appl>.

This can for example be done in your gap. ini file, see Section 3.2.1.

6.11 Editor Support

In the etc subdirectory of the GAP installation we provide some setup files for the editor vim.
vim is a powerful editor that understands the basic vi commands but provides much more func-
tionality. You can find more information about it (and download it) from https://www.vim. org.
To get support for GAP syntax in vim, create in your home directory a directory .vim with subdi-
rectories .vim/syntax and .vim/indent (If you are not using Unix, refer to the vim documentation
on where to place syntax files). Then copy the file etc/vim/gap.vimto .vim/syntax/gap.vim and
the file etc/vim/gap_indent.vimto .vim/indent/gap.vim.

https://www.vim.org

GAP - Reterence Manual 106

Then edit the . vimrc file in your home directory. Add lines as in the following example:

Example
if has("syntax")

syntax on " Default to no syntax highlighting
endif

" For GAP files
augroup gap
" Remove all gap autocommands
au!
autocmd BufRead,BufNewFile *.g,*.gi,*.gd set filetype=gap comments=s:##\ \ ,m:##\

" I’m using the external program ‘par’ for formatting comment lines starting
" with ‘## . Include these lines only when you have par installed.

autocmd BufRead,BufNewFile *.g,*.gi,*.gd set formatprg="par w76p4s0j"

autocmd BufWritePost,FileWritePost *.g,*.gi,*.gd set formatprg="par w76p0s0j"
augroup END

See the headers of the two mentioned files for additional comments and adjust details according
to your personal taste. Send comments and suggestions to support@gap-system. org.

Users of emacs/xemacs may wish to take a look at the major-mode for editing GAP files by Ivan
Andrus.

6.12 Changing the Screen Size

6.12.1 SizeScreen

> SizeScreen([sz]) (function)

Called with no arguments, SizeScreen returns the size of the screen as a list with two entries.
The first is the length of each line, the second is the number of lines.

Called with one argument that is a list sz, SizeScreen sets the size of the screen; The first entry
of sz, if bound, is the length of each line, and the second entry of sz, if bound, is the number of lines.
The values for unbound entries of sz are left unaffected. The function returns the new values.

Note that those parameters can also be set with the command line options -x for the line length
and -y for the number of lines (see Section 3.1).

To check/change whether line breaking occurs for files and streams see PrintFormattingStatus
(10.4.8) and SetPrintFormattingStatus (10.4.8).

The line length must be between 20 and 4096 characters (inclusive) and the number of lines must
be at least 10. Values outside this range will be adjusted to the nearest endpoint of the range.

6.13 Teaching Mode

When using GAP in the context of (undergraduate) teaching it is often desirable to simplify some of
the system output and functionality defaults (potentially at the cost of making the printing of objects
more expensive). This can be achieved by turning on a teaching mode:

\ ,e:##\ \ b:#

mailto://support@gap-system.org
https://melpa.org/#/gap-mode

GAP - Reterence Manual 107

6.13.1 TeachingMode

> TeachingMode ([switch]) (function)

When called with a boolean argument switch, this function will turn teaching mode respectively
on or off.

Example
gap> a:=Z2(11)"3;

Z(11)"~3

gap> TeachingMode (true);

#I Teaching mode is turned ON
gap> a;

ZmodnZ0bj (8,11)

gap> TeachingMode(false);

#I Teaching mode is turned OFF
gap> a;

Z(11)"3

At the moment, teaching mode changes the following things

Prime Field Elements
Elements of fields of prime order are printed as ZmodnZ0bj (14.5.3) instead as power of a
primitive root.

Quadratic Irrationalities
Elements of a quadratic extension of the rationals are printed using the square root ER (18.4.2)
instead of using roots of unity.

Creation of some small groups
The group creator functions CyclicGroup (50.1.2), AbelianGroup (50.1.3),
ElementaryAbelianGroup (50.1.4), and DihedralGroup (50.1.6) create by default (if
no other representation is specified) not a pc group, but a finitely presented group, which makes
the generators easier to interpret.

Chapter 7

Debugging and Profiling Facilities

This chapter describes some functions that are useful mainly for debugging and profiling purposes.

Probably the most important debugging tool in GAP is the break loop (see Section 6.4) which
can be entered by putting an Error (6.6.1) statement into your code or by hitting Control-C. In the
break loop one can inspect variables, stack traces and issue commands as usual in an interactive GAP
session. See also the DownEnv (6.5.1), UpEnv (6.5.1), Where (6.4.5) and WhereWithVars (6.4.5)
functions.

Sections 7.2 and 7.3 show how to get information about the methods chosen by the method selec-
tion mechanism (see chapter 78).

The final sections describe functions for collecting statistics about computations (see Runtime
(7.6.2), 7.8).

7.1 Recovery from NoMethodFound-Errors

When the method selection fails because there is no applicable method, an error as in the following
example occurs and a break loop is entered:

Example

gap> IsNormal(2,2);

Error, no method found! For debugging hints type 7Recovery from NoMethodFound

Error, no 1st choice method found for ‘IsNormal’ on 2 arguments at GAPROOT/lib/methsel2.g:250 cal
<function "HANDLE_METHOD_NOT_FOUND">(<arguments>)
called from read-eval loop at *stdin*:1

type ’quit;’ to quit to outer loop

brk>

This only says, that the method selection tried to find a method for IsNormal on two arguments
and failed. In this situation it is crucial to find out, why this happened. Therefore there are a few
functions which can display further information. Note that you can leave the break loop by the quit
command (see 6.4.1) and that the information about the incident is no longer accessible afterwards.

7.1.1 ShowArguments

> ShowArguments () (function)

108

GAP - Reterence Manual 109

This function is only available within a break loop caused by a “No Method Found”-error. It prints
as a list the arguments of the operation call for which no method was found.

7.1.2 ShowArgument

> ShowArgument (ar) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints the nr-th arguments of the operation call for which no method was found. ShowArgument
needs exactly one argument which is an integer between 0 and the number of arguments the operation
was called with.

7.1.3 ShowDetails

> ShowDetails() (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints the details of this error: The operation, the number of arguments, a flag which indicates whether
the operation is being traced, a flag which indicates whether the operation is a constructor method,
and the number of methods that refused to apply by calling TryNextMethod (78.5.1). The last num-
ber is called Choice and is printed as an ordinal. So if exactly k methods were found but called
TryNextMethod (78.5.1) and there were no more methods it says Choice: kth.

7.1.4 ShowMethods

> ShowMethods ([verbosity]) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints an overview about the installed methods for those arguments the operation was called with
(using 7.2. The verbosity can be controlled by the optional integer parameter verbosity. The default
is 2, which lists all applicable methods. With verbosity 1 ShowMethods only shows the number of
installed methods and the methods matching, which can only be those that were already called but
refused to work by calling TryNextMethod (78.5.1). With verbosity 3 not only all installed methods
but also the reasons why they do not match are displayed.

7.1.5 ShowOtherMethods

> ShowOtherMethods ([verbosityl]) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints an overview about the installed methods for a different number of arguments than the number
of arguments the operation was called with (using 7.2. The verbosity can be controlled by the optional
integer parameter verbosity. The default is 1 which lists only the number of applicable methods.
With verbosity 2 ShowOtherMethods lists all installed methods and with verbosity 3 also the reasons,
why they are not applicable. Calling ShowOtherMethods with verbosity 3 in this function will nor-
mally not make any sense, because the different numbers of arguments are simulated by supplying the
corresponding number of ones, for which normally no reasonable methods will be installed.

GAP - Reterence Manual 110

7.2 Inspecting Applicable Methods

7.2.1 ApplicableMethod

> ApplicableMethod(opr, args[, printlevell[, nr]]) (function)
> ApplicableMethodTypes(opr, args[, printlevel[, nrl]) (function)

Called with two arguments, ApplicableMethod returns the method of highest rank that is appli-
cable for the operation opr with the arguments in the list args. The default printlevel is 0. If no
method is applicable then fail is returned.

If a positive integer is given as the fourth argument nr then ApplicableMethod returns the nr-th
applicable method for the operation opr with the arguments in the list args, where the methods are
ordered according to descending rank. If less than nr methods are applicable then fail is returned.

If the fourth argument nr is the string "all" then ApplicableMethod returns a list of all appli-
cable methods for opr with arguments args, ordered according to descending rank.

Depending on the integer value printlevel, additional information is printed. Admissible values
and their meaning are as follows.

0 no information,

1 information about the applicable method,

2 also information about the not applicable methods of higher rank,

3 also for each not applicable method the first reason why it is not applicable,
4 also for each not applicable method all reasons why it is not applicable.

6 also the function body of the selected method(s)

When a method returned by ApplicableMethod is called then it returns either the desired result
or the string "TRY_NEXT_METHOD", which corresponds to a call to TryNextMethod (78.5.1) in the
method and means that the method selection would call the next applicable method.

Note: The GAP kernel provides special treatment for the infix operations \+, \-, *, \/, \~, \mod
and \in. For some kernel objects (notably cyclotomic numbers, finite field elements and row vectors
thereof) it calls kernel methods circumventing the method selection mechanism. Therefore for these
operations ApplicableMethod may return a method which is not the kernel method actually used.

The function ApplicableMethodTypes takes the types or filters of the arguments as argument (if
only filters are given of course family predicates cannot be tested).

7.3 Tracing Methods

7.3.1 TraceMethods (for operations)

> TraceMethods(oprl, opr2, ...) (function)
> TraceMethods (oprs) (function)

After the call of TraceMethods, whenever a method of one of the operations opri1, opr2, ... is
called, the information string used in the installation of the method is printed. The second form has
the same effect for each operation from the list oprs of operations.

GAP - Reterence Manual 111

7.3.2 TraceAllMethods

> TraceAllMethods() (function)

Invokes TraceMethods for all operations.

7.3.3 UntraceMethods (for operations)

> UntraceMethods(oprl, opr2, ...) (function)
> UntraceMethods (oprs) (function)

turns the tracing off for all operations opr1, opr2, ... or in the second form, for all operations in
the list oprs.
Example

gap> TraceMethods([Size]);

gap> g:= Group((1,2,3), (1,2));;

gap> Size(g);

#I Size: for a permutation group at /gap5/lib/grpperm.gi:487
#I Setter(Size): system setter

#I Size: system getter

#I Size: system getter

6

gap> UntraceMethods([Size]);

7.3.4 UntraceAllMethods

> UntraceAllMethods () (function)

Equivalent to calling UntraceMethods for all operations.

7.3.5 TraceImmediateMethods

> TraceImmediateMethods([flag]) (function)
> UntraceImmediateMethods () (function)

TraceImmediateMethods enables tracing for all immediate methods if flag is either true, or
not present. UntraceImmediateMethods, or TraceImmediateMethods with flag equal false
turns tracing off. (There is no facility to trace specific immediate methods.)

Example

gap> TraceImmediateMethods();
gap> g:= Group((1,2,3), (1,2));;
#I RunImmediateMethods

#I immediate: Size

#I immediate: IsCyclic

#I immediate: IsCommutative
#I immediate: IsTrivial

gap> Size(g);

#I immediate: IsPerfectGroup
#I immediate: IsNonTrivial

#I immediate: Size

GAP - Reterence Manual 112

#I immediate: IsFreeAbelian

#I immediate: IsTorsionFree

#I immediate: IsNonTrivial

#I immediate: IsPerfectGroup
#I immediate: GeneralizedPcgs
#I immediate: IsEmpty

6

gap> UntraceImmediateMethods() ;
gap> UntraceMethods([Size]);

This example gives an explanation for the two calls of the “system getter” for Size (30.4.6).
Namely, there are immediate methods that access the known size of the group. Note that the group
g was known to be finitely generated already before the size was computed, the calls of the imme-
diate method for IsFinitelyGeneratedGroup (39.15.18) after the call of Size (30.4.6) have other
arguments than g.

7.3.6 TracelnternalMethods

> TraceInternalMethods () (function)
> UntraceInternalMethods () (function)
> GetTraceInternalMethodsCounts () (function)
> ClearTraceInternalMethodsCounts () (function)

TraceInternalMethods enables tracing for all internal methods. Internal methods are methods
which implement many fundamental operations in GAP. In this version of GAP, the internal methods
which can be traced are:

Zero, ZeroMut
Mutable and Immutable Zero (31.10.3)

Alnv, AInvMut
Mutable and Immutable AdditiveInverse (31.10.9)

One, OneMut
Mutable and Immutable One (31.10.2)

Inv, InvMut
Mutable and Immutable Inverse (31.10.8)

Sum The operator \+ (31.12.1)
Diff The operator - operator

Prod
The operator * (31.12.1)

Quo The operator \/ (31.12.1)

LQuo
The left-quotient operator

GAP - Reterence Manual 113

Pow The operator \~ (31.12.1)

Comm
The operator Comm (31.12.3)

Mod The operator \mod (31.12.1)

UntraceInternalMethods turns tracing off. As these methods can be called hundreds of thou-
sands of times in simple GAP code, there isn’t a statement printed each time one is called. Instead,
the method GetTraceInternalMethodsCounts returns how many times each operation has been
applied to each type of variable (the type of a variable can be found with the TNAM_0BJ method).
The return value for two argument operators is a record of records r, where r. op stores information
about operator op. For one argument operators r.op. i stores how many times op was called with an
argument of type i, while for two argument operators r.op. i. j stores how many times op was called

with arguments of type i and j.
Example

gap> TraceInternalMethods();

true

gap> 2+3+4+5+6; ;

gap> 2.0+2.0;;

gap> 3°(1,2,3);;

gap> GetTraceInternalMethodsCounts();

rec(Pow := rec(integer := rec(("permutation (small)") :=1)),
Sum := rec(integer := rec(integer := 4),
macfloat := rec(macfloat :=1)))

’macfloat’ is a floating point number
gap> UntraceInternalMethods();

7.4 1Info Functions

The Info (7.4.6) mechanism permits operations to display intermediate results or information about
the progress of the algorithms. Information is always given according to one or more info classes.
Each of the info classes defined in the GAP library usually covers a certain range of algorithms, so for
example InfoLattice covers all the cyclic extension algorithms for the computation of a subgroup
lattice.

Note that not all info classes defined in the GAP library are currently documented. Many GAP
packages define additional info classes, which are typically documented in the corresponding package
documentation. The function ShowUsedInfoClasses (7.4.5) will show all info classes which GAP
considers while executing code.

The amount of information to be displayed by each info class can be separately specified by the
user. This is done by selecting a non-negative integer level for the info class: no information will be
displayed at level 0, and the higher the level, the more information that will be displayed. At creation,
an info class has level 0. By default, all built-in GAP info classes have level 0, except for the following
info classes, which have level 1:

* InfoWarning (7.4.8),
* InfoPackageLoading (76.2.5),

* InfoDebug,

GAP - Reterence Manual 114

e InfoPerformance,
* InfoTempDirectories,

e InfoPrimeInt, and

InfoSLP.

7.4.1 NewlnfoClass

> NewInfoClass (name) (operation)

creates a new info class with name name.

7.4.2 DeclareInfoClass

> DeclareInfoClass (name) (function)

creates a new info class with name name and binds it to the global variable name. The variable
must previously be writable, and is made read-only by this function.

7.4.3 SetInfoLevel

> SetInfolevel(infoclass, level) (operation)

Sets the info level for infoclass to the non-negative integer level.

7.4.4 InfoLevel

> Infolevel(infoclass) (operation)

returns the info level of infoclass.

7.4.5 ShowUsedInfoClasses

> ShowUsedInfoClasses(infoclass) (function)

Called with argument true, this makes GAP print the info class and level of any executed Info
(7.4.6) statement. Calling with the argument false stops this printing. Each level of each info class
is only printed once. The history of printed info classes and levels is reset whenever true is passed.
Example

gap> ShowUsedInfoClasses(true);

gap> Intersection(Group((1,3,2,4,5,6)), Group((1,2,3,4,5,6)));
#I Would print info with SetInfoLevel(InfoBckt,1)

#I Would print info with SetInfoLevel(InfoBckt,3)

#I Would print info with SetInfoLevel(InfoBckt,5)

Group(())

gap> Intersection(Group((1,3,2,4,5,6)), Group((1,2,3,4,5,6)));
Group(())

gap> ShowUsedInfoClasses(false);

GAP - Reterence Manual

7.4.6 Info

> Info(infoclass, level, info[, moreinfo, ...])

115

(function)

If the info level of infoclass is at least 1evel, then the remaining arguments, info, and possibly

moreinfo and so on, are evaluated. (Technically, Info is a keyword and not a function.)

By default, the results of these evaluations are viewed, preceded by the string "#I " and followed

by a newline.

If the info level of infoclass is strictly less than Ievel, then the third and subsequent arguments

are not evaluated. (The latter can save substantial time when displaying difficult results.)
The behaviour can be customized with SetInfoHandler (7.4.7).

Example

gap> InfoExample:=NewInfoClass("InfoExample");;

gap> Info(InfoExample,1,"one") ;Info(InfoExample,2,"two");
gap> SetInfolLevel (InfoExample,1);

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");
#I one

gap> SetInfolevel (InfoExample,2);

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");

#I one

#I two

gap> InfolLevel (InfoExample) ;
2

gap> Info(InfoExample,3,Length(Combinations([1..9999])));

Note that the last Info call is executed without problems, since the actual level 2 of InfoExample
causes Info to ignore the last argument, which prevents Length (Combinations([1..9999])) from

being evaluated; note that an evaluation would be impossible due to memory restrictions.

A set of info classes (called an info selector) may be passed to a single Info statement. As a
shorthand, info classes and selectors may be combined with + rather than Union (30.5.3). In this case,

the message is triggered if the level of any of the classes is high enough.

Example

gap> InfoExample:=NewInfoClass("InfoExample");;
gap> SetInfolLevel (InfoExample,0);

gap> Info(InfoExample + InfoWarning, 1, "hello");
#I hello

gap> Info(InfoExample + InfoWarning, 2, "hello");
gap> SetInfolevel (InfoExample,2);

gap> Info(InfoExample + InfoWarning, 2, "hello");

#I hello
gap> InfolLevel (InfoWarning);
1

7.4.7 Customizing Info (7.4.6) statements

> SetInfoHandler (infoclass, handler)
> SetInfoOutput(infoclass, out)

> UnbindInfoOutput(infoclass)

> InfoOutput(infoclass)

(function)
(function)
(function)

(function)

GAP - Reterence Manual 116

> SetDefaultInfoOutput (out) (function)
Returns: nothing
This allows one to customize what happens in an Info(infoclass, level, ...) statement.

In the first function, handler must be a function with three arguments infoclass, level, list.
Here 1ist is the list containing the third argument and any subsequent optional arguments of the Info
(7.4.6) call.

The default handler is the function DefaultInfoHandler. It prints "#I ", then the third and
further arguments of the info statement, and finally a "\n".

If the first argument of an Info (7.4.6) statement is a sum of Info classes, the handler of the first
summand is used.

The file or stream to which Info (7.4.6) statements for individual Info (7.4.6) classes print
can be overridden with SetInfoOutput, retrieved with InfoOutput and reset to the default with
UnbindInfoOutput. The initial default for all Info (7.4.6) classes is the string "*Print*" which
means the current output file. The default can be changed with SetDefaultInfoOutput. The ar-
gument out can be a filename or an open stream, the special names "*Print*", "*errout* and
"xstdout* are also recognized.

For example, SetDefaultInfoOutput ("*errout*"); would send Info (7.4.6) output to stan-
dard error, which can be interesting if GAPs output is redirected.

7.4.8 InfoWarning

> InfoWarning (info class)
is an info class to which general warnings are sent at level 1, which is its default level. More
specialised warnings are shown via calls of Info (7.4.6) at InfoWarning level 2, e.g. information

about the autoloading of GAP packages and the initial line matched when displaying an on-line help
topic.

7.5 Assertions

Assertions are used to find errors in algorithms. They test whether intermediate results conform to
required conditions and issue an error if not.

7.5.1 SetAssertionLevel

> SetAssertionLevel(lev) (function)

assigns the global assertion level to 1ev. By default it is zero.

7.5.2 AssertionLevel

> Assertio